Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kudo Shinichi
Xem chi tiết
Kudo Shinichi
6 tháng 7 2016 lúc 21:00

Trả lời hộ mình đi

Kudo Shinichi
Xem chi tiết
Minh Nguyễn Cao
Xem chi tiết
Nhock Ma
14 tháng 8 2018 lúc 17:45

ĐÂY ĐÂU PHẢI TOÁN LỚP 9 HẢ BẠN...

Nguyễn thị Ngọc Ánh
Xem chi tiết
zZz Cool Kid_new zZz
30 tháng 12 2019 lúc 18:14

\(\frac{a+1}{b^2+1}=\frac{\left(a+1\right)\left(b^2+1\right)-b^2\left(a+1\right)}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\)

\(\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{ab+a}{2}\)

Thiết lập các bất đẳng thức tương tự rồi cộng lại ta được:

\(LHS\ge a+b+c+3-\frac{ab+bc+ca+3}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}=3=RHS\)

Khách vãng lai đã xóa
oooloo
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 6 2020 lúc 0:23

\(\frac{a+1}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b\left(a+1\right)}{2}\)

Tương tự: \(\frac{b+1}{c^2+1}\ge b+1-\frac{c\left(b+1\right)}{2}\) ; \(\frac{c+1}{a^2+1}\ge c+1-\frac{a\left(c+1\right)}{2}\)

Cộng vế với vế:

\(VT\ge6-\frac{1}{2}\left(ab+bc+ca+a+b+c\right)\)

\(VT\ge\frac{9}{2}-\frac{1}{2}\left(ab+bc+ca\right)\ge\frac{9}{2}-\frac{1}{6}\left(a+b+c\right)^2=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Anh Khương Vũ Phương
Xem chi tiết
Unruly Kid
10 tháng 11 2017 lúc 17:14

Cái này không khó :v

Áp dụng BĐT Cauchy-Schwarz dạng Engel, ta có:

\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{a+c}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)

Face khác ;v, theo AM-GM, ta có

\(\dfrac{a+b+c}{2}\ge\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\dfrac{6}{2}=3\)

Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c=2

Khương Vũ Phương Anh
Xem chi tiết
Đinh Đức Hùng
10 tháng 11 2017 lúc 17:03

Ta có :

\(\frac{a^2}{a+b}=\frac{a^2+ab-ab}{a+b}=a-\frac{ab}{a+b}\le a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)(1)

Tương tự \(\hept{\begin{cases}\frac{b^2}{b+c}\le b-\frac{\sqrt{bc}}{2}\\\frac{c^2}{a+c}\le c-\frac{\sqrt{ac}}{2}\end{cases}}\)(2)

Nhhan (1);(2) lại ta được

 \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge a+b+c-\frac{\sqrt{ab}+\sqrt{ac}+\sqrt{bc}}{2}=a+b+c-3\)

Ta lại có : \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{bc}=6\) (tự cm)

\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge6-3=3\)(đpcm)

Quách Quách Cá Tính
10 tháng 11 2017 lúc 17:07

chế gì ơi mình kết bạn với nhau được không?

Đinh Đức Hùng
10 tháng 11 2017 lúc 17:07

mấy dấu bên trên là \(\ge\) nha mình viết nhầm

Angela jolie
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 2 2020 lúc 12:31

\(P=\sum\frac{a+1}{b^2+1}=\sum\left(a+1-\frac{b^2\left(a+1\right)}{b^2+1}\right)\ge\sum\left(a+1-\frac{b^2\left(a+1\right)}{2b}\right)=\sum\left(a+1-\frac{1}{2}b\left(a+1\right)\right)\)

\(\Rightarrow P\ge\frac{1}{2}\left(a+b+c\right)-\frac{1}{2}\left(ab+bc+ca\right)+3\)

\(P\ge\frac{1}{2}\left(a+b+c\right)-\frac{1}{6}\left(a+b+c\right)^2+3=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Khách vãng lai đã xóa
Nguyễn Phương Thanh
Xem chi tiết