Cho a, b, c > 0 tm \(a^2+b^2+c^2=3\) . CMR:
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge3\)
1) Cho a,b,c>0 tm a+b+c=3. Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
2) Cho a,b,c>0 tm \(a^2+b^2+c^2\le abc\).Cmr \(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{1}{2}\)
3) Cho a,b,c>0 tm \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\).Cmr \(\sqrt{\frac{ab}{a+b+2c}}+\sqrt{\frac{bc}{b+c+2a}}+\sqrt{\frac{ca}{c+a+2b}}\le\frac{1}{2}\)
Giúp mình mới nhé các bạn. Mình đang cần gấp
1) Cho a,b,c>0 tm a+b+c=3. Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
2) Cho a,b,c>0 tm a^2+b^2+c^2 bé hơn hoặc bằng abc. Cmr \(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{1}{2}\)
3) Cho a,b,c>0 tm a+b+c<=3. Cmr \(\frac{ab}{\sqrt{3+c}}+\frac{bc}{\sqrt{3+a}}+\frac{ca}{\sqrt{3+b}}\le\frac{3}{2}\)
4) Cho a,b,c>0 tm a+b+c=2. Cmr \(\frac{a}{\sqrt{4a+3bc}}+\frac{b}{\sqrt{4b+3ca}}+\frac{c}{\sqrt{4c+3ab}}\le1\)
5) Cho a,b,c>0. Cmr \(\sqrt{\frac{a^3}{5a^2+\left(b+c\right)^2}}+\sqrt{\frac{b^3}{5b^2+\left(c+a\right)^2}}+\sqrt{\frac{c^3}{5c^2+\left(a+b\right)^2}}\le\sqrt{\frac{a+b+c}{3}}\)
6) Cho a,b,c>0. Cmr \(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\frac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\frac{c^2}{\left(2c+a\right)\left(2c+b\right)}\le\frac{1}{3}\)
Giúp mình với nhé các bạn
Cho a,b,c > 0 và a + b + c = 3
CMR: \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)
cho a, b, c > 0 thỏa mãn a + b + c = 3. CMR:
\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)
\(\frac{a+1}{b^2+1}=\frac{\left(a+1\right)\left(b^2+1\right)-b^2\left(a+1\right)}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\)
\(\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{ab+a}{2}\)
Thiết lập các bất đẳng thức tương tự rồi cộng lại ta được:
\(LHS\ge a+b+c+3-\frac{ab+bc+ca+3}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}=3=RHS\)
cho a, b, c > 0 thỏa mãn a+b+c=3. Cmr:
\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)
\(\frac{a+1}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b\left(a+1\right)}{2}\)
Tương tự: \(\frac{b+1}{c^2+1}\ge b+1-\frac{c\left(b+1\right)}{2}\) ; \(\frac{c+1}{a^2+1}\ge c+1-\frac{a\left(c+1\right)}{2}\)
Cộng vế với vế:
\(VT\ge6-\frac{1}{2}\left(ab+bc+ca+a+b+c\right)\)
\(VT\ge\frac{9}{2}-\frac{1}{2}\left(ab+bc+ca\right)\ge\frac{9}{2}-\frac{1}{6}\left(a+b+c\right)^2=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
cho a, b, c >0 tm \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=6\)
CMR \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge3\)
Cái này không khó :v
Áp dụng BĐT Cauchy-Schwarz dạng Engel, ta có:
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{a+c}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
Face khác ;v, theo AM-GM, ta có
\(\dfrac{a+b+c}{2}\ge\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\dfrac{6}{2}=3\)
Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c=2
Cho a, b, c >0 tm \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=6\)
CMR \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge3\)
Ta có :
\(\frac{a^2}{a+b}=\frac{a^2+ab-ab}{a+b}=a-\frac{ab}{a+b}\le a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)(1)
Tương tự \(\hept{\begin{cases}\frac{b^2}{b+c}\le b-\frac{\sqrt{bc}}{2}\\\frac{c^2}{a+c}\le c-\frac{\sqrt{ac}}{2}\end{cases}}\)(2)
Nhhan (1);(2) lại ta được
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge a+b+c-\frac{\sqrt{ab}+\sqrt{ac}+\sqrt{bc}}{2}=a+b+c-3\)
Ta lại có : \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{bc}=6\) (tự cm)
\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge6-3=3\)(đpcm)
chế gì ơi mình kết bạn với nhau được không?
mấy dấu bên trên là \(\ge\) nha mình viết nhầm
Cho a, b, c>0 thỏa mãn a+b+c=3. CMR: \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)\(\ge3\)
\(P=\sum\frac{a+1}{b^2+1}=\sum\left(a+1-\frac{b^2\left(a+1\right)}{b^2+1}\right)\ge\sum\left(a+1-\frac{b^2\left(a+1\right)}{2b}\right)=\sum\left(a+1-\frac{1}{2}b\left(a+1\right)\right)\)
\(\Rightarrow P\ge\frac{1}{2}\left(a+b+c\right)-\frac{1}{2}\left(ab+bc+ca\right)+3\)
\(P\ge\frac{1}{2}\left(a+b+c\right)-\frac{1}{6}\left(a+b+c\right)^2+3=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a,b,c>0 và abc = 1
CMR:
\(\frac{a+3}{\left(a+1\right)^2}+\frac{b+3}{\left(b+1\right)^2}+\frac{c+3}{\left(c+1\right)^2}\ge3.\\ \)