cho tam giác abc cân tại a có cạnh bên =15cm cạnh đáy =18cm tính chiều cao
Cho tam giác ABC có cạnh AB bằng 16 cm; Cạnh AC bằng 18cm; cạnh BC bằng 15cm, chiều cao hạ từ đỉnh A xuống đáy BC dài 12cm. Tính:
a) Diện tích tam giác ABC.
b) Tính các chiều cao còn lại của tam giác.
a, Diện tích tam giác ABC là
\(\dfrac{1}{2}.12.15=90cm^2\)
b, thiếu đề rồi bạn
Cho tam giác ABC cân tại A có chiều cao ứng với cạnh đáy là 40cm và chiều cao ứng với cạnh bên là 48cm
tính diẹn tích tam giác ABC
Cho tam giác cân ABC cạnh bên 10cm cạnh đáy 12cm tính chiều cao cạnh bên
1) Cho tam giác ABC cân A, biết cạnh AC = 15cm; BC = 18cm. Tính độ dài các đường cao của tam giác ABC
Nửa chu vi tam giác là (15+15+18)/2=24(cm);
Diện tích tam giác là sqrt[24*(24-15)*(24-15)*(24-18)]=108(cm2);
chiều cao ứng với 2 cạnh bên 15 cm là 108*2/15=14.4(cm);
chiều cao ứng với cạnh đáy 18cm là 108*2/18 =12(cm);
Câu 1:Tính độ dài cạnh AB của tam giác ABC vuông tại A có hai đường trung tuyến AM và BN lần lượt bằng 6 cm và 9 cm.
Câu 2: Cho hình thang cân ABCD, đáy lớn CD=10 cm, đáy nhỏ bằng đường cao, đường chéo vuông góc với cạnh bên. Tính độ dài đường cao của hình thang cân đó.
Câu 3: Cho tam giác ABC cân tại A, đường cao ứng với cạnh đáy có độ dài 15,6 cm, đường cao ứng với cạnh bên dài 12 cm. Tính độ dài cạnh đáy BC.
Câu 4: Cho tam giác ABC vuông tại A, AB<AC; gọi I là giao điểm các đường phân giác, M là trung điểm BC . Cho biết góc BIM bằng 90°. Tính BC:AC:AB.
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
câu 1: Tính đường cao của một tam giác cân có đáy 5 cm, cạnh bên 6,5 cm.
câu 2: Cho tam giác cân ABC, biết AB = AC = 17cm. Kẻ BD⊥AC. Tính cạnh đáy BC, biết BD = 15cm
làm nhanh giúp mknha
Cho tam giác ABC cân tại A, đường cao ứng với cạnh đáy có độ dài 15,6cm, đường cao ứng với cạnh bên dài 12cm. Tính độ dài cạnh đáy BC. Giải bằng hệ thức lượng trong tam giác vuông. Giúp mình với mình đang cần gấp. Cảm ơn
Cho tam giác ABC cân tại A, đường cao thuộc cạnh đáy bằng 20cm, tỉ số cạnh đáy và cạnh bên là 4/3. Tính khoảng cách từ giao điểm của ba đường phân giác trong đến mỗi cạnh của tam giác ?
Cho tam giác ABC cân ở A, đường cao tương ứng với cạnh đáy có độ dài 15,6 cm , độ cao tương ứng với cạnh bên 12cm. Tính độ dài cạnh đáy BC
Lời giải:
Gọi $H$ là chân đường cao kẻ từ $A$. Vì $ABC$ cân tại $A$ nên $H$ là trung điểm $BC$
Ta có:
\(S_{ABC}=\frac{AH.BC}{2}=\frac{h_C.AB}{2}\)
\(\Rightarrow BC=\frac{h_C.AB}{AH}=\frac{12AB}{15,6}=\frac{10}{13}AB\)
\(\Rightarrow BH=\frac{5}{13}AB\)
Áp dụng định lý Pitago:
$AH^2=AB^2-BH^2=AB^2-(\frac{5}{13}AB)^2$
$\Leftrightarrow 15,6^2=\frac{144}{169}AB^2$
$\Rightarrow AB=16,9$
$\Rightarrow BC=\frac{10}{13}AB=13$ (cm)
Trong một tam giác cân, cạnh bên dài 17cm, đường cao ứng với đáy dài 15cm. Tính độ dài của đáy tam giác.
Gọi tam giác cân ABC cân tại A với đường cao AH
\(\Rightarrow AB=17\) và \(AH=15\)
Đồng thời do ABC cân nên AH đồng thời là trung tuyến
\(\Rightarrow BH=CH\)
Áp dụng định lý Pitago cho tam giác vuông ABH:
\(BH^2=AB^2-AH^2=64\)
\(\Rightarrow BH=8\Rightarrow BC=BH+CH=16\left(cm\right)\)
giả sử là tam giác ABC cân tại A có đường cao AD
\(\Rightarrow\left\{{}\begin{matrix}AB=AC=17cm\\AD=15cm\end{matrix}\right.\)
\(\Rightarrow BD=\sqrt{AB^2-AD^2}=\sqrt{17^2-15^2}=8\)
Vì tam giác ABC cân tại A có đường cao AD \(\Rightarrow\) AD là trung tuyến
\(\Rightarrow D\) là trung điểm BC \(\Rightarrow BC=2BD=2.8=16\left(cm\right)\)