Gọi tam giác cân ABC cân tại A với đường cao AH
\(\Rightarrow AB=17\) và \(AH=15\)
Đồng thời do ABC cân nên AH đồng thời là trung tuyến
\(\Rightarrow BH=CH\)
Áp dụng định lý Pitago cho tam giác vuông ABH:
\(BH^2=AB^2-AH^2=64\)
\(\Rightarrow BH=8\Rightarrow BC=BH+CH=16\left(cm\right)\)
giả sử là tam giác ABC cân tại A có đường cao AD
\(\Rightarrow\left\{{}\begin{matrix}AB=AC=17cm\\AD=15cm\end{matrix}\right.\)
\(\Rightarrow BD=\sqrt{AB^2-AD^2}=\sqrt{17^2-15^2}=8\)
Vì tam giác ABC cân tại A có đường cao AD \(\Rightarrow\) AD là trung tuyến
\(\Rightarrow D\) là trung điểm BC \(\Rightarrow BC=2BD=2.8=16\left(cm\right)\)