Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trung Hoàng
Xem chi tiết
Trí Tiên
25 tháng 2 2020 lúc 16:40

Bài này bạn chỉ cần chuyển vế biến đổi thôi là được , mình làm mẫu câu 2) :

\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)

\(\Leftrightarrow\frac{a^2n+b^2m}{mn}-\frac{\left(a+b\right)^2}{m+n}\ge0\)

\(\Leftrightarrow\frac{\left(m+n\right)\left(a^2n+b^2m\right)-\left(a^2+2ab+b^2\right).mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{a^2mn+\left(bm\right)^2+\left(an\right)^2+b^2mn-a^2mn-2abmn-b^2mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{\left(bm-an\right)^2}{mn\left(m+n\right)}\ge0\) ( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow bm=an\)

Câu 3) áp dụng câu 2) để chứng minh dễ dàng hơn, ghép cặp 2 .

Khách vãng lai đã xóa
Mất nick đau lòng con qu...
Xem chi tiết
tth_new
3 tháng 1 2020 lúc 19:15

Dạng này dùng hệ số bât định làm gì cho mệt?

Khách vãng lai đã xóa
Hoc24
Xem chi tiết
Hoang Hung Quan
26 tháng 3 2017 lúc 13:07

Giải:

\(\Leftrightarrow\left(\dfrac{m^2}{4}-mn+n^2\right)+\left(\dfrac{m^2}{4}-mp+p^2\right)+\left(\dfrac{m^2}{4}-mq+q^2\right)+\left(\dfrac{m^2}{4}-m+1\right)\ge0\)

\(\Leftrightarrow\left(\dfrac{m}{2}-n\right)^2+\left(\dfrac{m}{2}-p\right)^2+\left(\dfrac{m}{2}-q\right)^2+\left(\dfrac{m}{2}-1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{m}{2}-n=0\\\dfrac{m}{2}-p=0\\\dfrac{m}{2}-q=0\\\dfrac{m}{2}-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}n=\dfrac{m}{2}\\p=\dfrac{m}{2}\\q=\dfrac{m}{2}\\m=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m=2\\n=p=q=1\end{matrix}\right.\)

Ngọc Hiền
26 tháng 3 2017 lúc 21:04

m2+n2+p2+q2+1\(\ge\)m(n+p+q+1)(*)

nhân cả hai vế cho 4 ta được

(*)<=>(m2-4mn+4n2)+(m2-4mp+4p2)+(m2-4mq+4q2)+(m2-4m+4)\(\ge0\)

<=>(m-2n)2+(m-2p)2+(m-2q)2+(m-1)2\(\ge0\)

luôn đúng=>điều phải chứng minh

phan thị minh anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 9 2016 lúc 13:14

Với mọi \(n\ge2\)

\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}\)

                        \(=2\left(\sqrt{n+1}-\sqrt{n}\right)\) (1)

Lại có : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{\left(\sqrt{n}+\sqrt{n-1}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}\)

                                     \(=2\left(\sqrt{n}-\sqrt{n-1}\right)\) (2)

Từ (1) và (2) suy ra đpcm

 

 

Dưa Trong Cúc
Xem chi tiết
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Phạm Ánh Tuyết
6 tháng 5 2018 lúc 19:37

a, 5(2-3n)+42+3n\(\ge\)0

<=> 10-15n+42+3n\(\ge\)0

<=> 52-12n\(\ge\)0

<=> -12n\(\ge\)-52

<=>n\(\le\)\(\dfrac{13}{3}\)

Vậy bft có tập nghiệm là S={n/ n\(\le\)\(\dfrac{13}{3}\)}

Phạm Ánh Tuyết
6 tháng 5 2018 lúc 19:41

b, (n+1)2-(n-2)(n+2)\(\le\)1,5

<=> n2+2n+1-n2+4\(\le\)1,5

<=> 2n+5\(\le\)1,5

<=> 2n\(\le\)-4,5

<=>n\(\le\)-2,25

Vậy bft có tập nghiệm là S={ n/n\(\le\) -2,25}

Nguyễn tuấn nghĩa
Xem chi tiết
Không Tên
30 tháng 3 2018 lúc 21:47

c)          \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

\(\Leftrightarrow\)\(\left(ax\right)^2+2axby+\left(by\right)^2\le\left(ax\right)^2+\left(ay\right)^2+\left(bx\right)^2+\left(by\right)^2\)

\(\Leftrightarrow\)\(2axby\le\left(ay\right)^2+\left(bx\right)^2\)

\(\Leftrightarrow\)\(\left(ay\right)^2-2axby+\left(bx\right)^2\ge0\)

\(\Leftrightarrow\)\(\left(ay-bx\right)^2\ge0\)  luôn đúng

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\frac{a}{x}=\frac{b}{y}\)

Phúc
3 tháng 4 2018 lúc 18:14

a) cứ tach theo kieu a^2-2a+1 =(a-1)^2 >0 la ra

b)nhân 2 lên rồi trừ đi ghép hằng đẳng thức giống câu a la ra

d) dung bdt a^3+b^3>=a^2b+ab^2

Nguyễn Xuân Sáng
Xem chi tiết
Hoàng Thị Mai Trang
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 2 2020 lúc 11:13

a/ Bạn cứ khai triển biến đổi tương đương thôi (mà làm biếng lắm)

b/ Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)

\(VT=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

\(VT\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\left(x+y+z\right)\ge\frac{1}{2}.3\sqrt[3]{xyz}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

Khách vãng lai đã xóa
Trần Quốc Khanh
27 tháng 2 2020 lúc 11:33

Áp dụng Buhiacopxki có \(\left(\left(\frac{m}{\sqrt{x}}\right)^2+\left(\frac{n}{\sqrt{y}}\right)^2\right)\left(\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right)\ge\left(m+n\right)^2\)

\(\RightarrowĐPCM\)

Khách vãng lai đã xóa