Tính D = \(\frac{x+y}{x-y}\) biết 2x2 + y2 = 5xy và 0<x<2y
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a) 3x(x+1)-x(3x+2)
b) 2x(x2-5x+6)+(x-1)(x+3)
c) (x2-xy+y2)-(x2+2xy+y2)
d) (2/5xy+x-y)-(3x+4y)-2/5xy
e) 2xy(x2-4xy+4y2)
f) (x+y)(xy+5)
g) (x3-2x2-x+2):(x-1)
h) (2x2+3x-2):(2x-1)
Cho 2x2+2y2=5xy và 0<x<y .Tính giá trị cưa E =x+y/x-y
2x2 + 2y2 = 5xy
=> 2x2 + 2y2 - 5xy = 0
=> (x - 2y)(2x - y) = 0
x = 2y (loại)
y = 2x
E = \(\dfrac{x+2x}{x-2x}\)=-3
Câu 3 : Tính giá trị của các biểu thức sau:
a. 3m - 2n tại m = -1, n = 2.
b. 7m + 2n – 6 tại m = 3, n = -4.
c. 3x2 + 5xy tại x = -1 và y = 1.
d. 2x2 - 3xy + y2 tại x = -1, y = 2
Tính giá trị biểu thức:A=x33+x2y-2x2-xy-y2+3y+x-5. Biết x+y-2=0
cho biết: 2x2+2y2=5xy và (x>y>0).Tính K=\(\frac{x+y}{x-y}\)
2x2+2y2=5xy <=> 2(x+y)2=9xy => x+y=\(\sqrt{\frac{9}{2}xy}\)
Và: 2(x-y)2=xy => x-y=\(\sqrt{\frac{1}{2}xy}\). Thay vào K ta được:
K=\(\frac{\sqrt{\frac{9}{2}xy}}{\sqrt{\frac{1}{2}xy}}=\sqrt{9}\)=3
Cho đa thức M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017. Tính giá trị của đa thức M biết x + y - 2 = 0
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-xy-y^2+2y+y+x-2+2019\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)
\(\Rightarrow M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right).0+2019\)
\(\Rightarrow M=0+2019\)
\(\Rightarrow M=2019\)
M=x3+x2y-2x2+3y-y2-xy+x-2022
Biết x+y-2=0
M=(x3+x2y-2x2)+(2y-y2-xy)+(x+y-2)+2020
M=x2(x+y-2)+y(2-y-x)+(x+y-2)+2020
M=x2.0+y.0+0+2020
M=2020
Vậy M=2020
không hiểu chỗ nào hỏi mình nha!
Bài : Cho đa thức M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017. Tính giá trị của đa thức M biết x + y - 2 = 0.
Help me !
M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017
M = (x3 + x2y - 2x2) - (xy + y2 - 2y) + (x + y - 2) + 2019
M = x2. (x + y - 2) - y(x + y - 2) + (x + y - 2) + 2019 = 2019
\(M = x^3 + x^2y - 2x^2 - xy - y^2 + 3y + x + 2017.\)
\(M=(x^3+x^2y-2x^2)-(xy-y^2+2y)+(x+y-2)+2019\)
\(M=x^2.(x+y-2)-y.(x-y+2)+(x+y-2)+2019\)
\(M=x^2.0-y.0+0+2019\)
\(M=0-0+0+2019\)
\(M=2019\)
Biết x,y là 2 đại lượng tỉ lệ nghịch: x1,y1 là 2 giá trị của x và y1,y2 là 2 giá trị tương ứng của y
a. Tính x1,x2,y1. Biết
3x1=4y1;5x1-2y1=28 và y2=24
b. Tính y1 biết: x1=2x2; y2=3