Cho đường tròn tâm O, bán kính R, đường kính BC. Qua trung điểm H của OB; vẽ dây AH vuông góc với OB tại H.
a) Chứng minh: Tam giác ACD đều.
b) Tính \(S_{ACD}\) theo R.
cho đường tròn tâm o bán kính r và điểm a nằm ngoài đường tròn. đường tròn đường kính oa cắt đường tròn tâm o bán kính r tại m và n, đường thẳng đi qua a cắt đường tròn tâm o bán kính r tại b và c. b thuộc đoạn ac. gọi h là trung điểm của bc.
a) am là tiếp tuyến của đường tròn tâm o bán kính r.
b) Đường thẳng qua B vuông góc với OM cắt MN tại d. chứng minh
1) góc AHN = góc BDN
2) DH // MC
Cho nửa đường tròn tâm O bán kính R đường kính AB, H là trung điểm của OA. Qua H vẽ đường thẳng vuông góc với OA cắt nửa đường tròn tâm O tại C. Gọi E và F là hình chiếu vuông góc của H trên AC và BC. d) Đường thẳng EF cắt nửa đường tròn tâm O tại M,N. Chứng minh rằng CM = CN
cho nửa đưởng tròn tâm o đường kính ab. lấy điểm d trên bán kính ob (khác O,B). gọi h là trung điểm của ad.đường vuông góc tại h với ab cắt nửa đường tròn tại c. đường tròn tâm i đường kính bd cắt tiếp bc tại e a) tứ giác acde là hình gì ? b)c/m tam giác ceh cân tại h và he là tiếp tuyến của (I)
Cho đường tròn tâm O , bán kính r , đường kính AB , dây AC không qua tâm , H là trung điểm AC. a) Tính góc ACB và chứng minh OH song song với BC b) Tiếp tuyến tại C của đường tròn O cắt tia OH ở M. CM: MA là tiếp tuyến tại A của đường tròn
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó:ΔACB vuông tại C
=>\(\widehat{ACB}=90^0\)
Ta có: ΔOAC cân tại O(OA=OC)
mà OH là đường trung tuyến
nên OH\(\perp\)AC và OH là tia phân giác của góc AOC
Ta có: OH\(\perp\)AC(cmt)
AC\(\perp\)CB tại C(Do ΔACB vuông tại C)
Do đó: OH//BC
b:
OH là phân giác của góc AOC
=>\(\widehat{AOH}=\widehat{COH}\)
mà M\(\in\)OH
nên \(\widehat{AOM}=\widehat{COM}\)
Xét ΔOCM và ΔOAM có
OC=OA
\(\widehat{COM}=\widehat{AOM}\)
OM chung
Do đó: ΔOCM=ΔOAM
=>\(\widehat{OCM}=\widehat{OAM}\)
mà \(\widehat{OCM}=90^0\)
nên \(\widehat{OAM}=90^0\)
=>OA\(\perp\)MA tại A
=>MA là tiếp tuyến tại A của (O)
Cho đường tròn tâm O bán kính R, dây AB không qua tâm O, I là trung điểm của AB. AB dài 16cm, bán kính R= 10 cm
a) Tính OI
b) OI cắt đường tròn O tại M . Tính AM
c) Kẻ đường kính MN của đường tròn tâm O, kẻ OK vuông góc với AN tại K. Tính AK
a: ΔOAB cân tại O
mà OI là đường trung tuyến
nên OI vuông góc AB
I là trung điểm của AB
=>IA=IB=16/2=8cm
ΔOIA vuông tại I
=>OA^2=OI^2+IA^2
=>OI^2=10^2-8^2=36
=>OI=6(cm)
b: OM=OI+IM
=>6+IM=10
=>IM=4cm
ΔMIA vuông tại I
=>MI^2+IA^2=MA^2
=>\(MA=\sqrt{4^2+8^2}=4\sqrt{5}\left(cm\right)\)
cho đường tròn tâm O bán kính R đường kính AB. Vẽ điểm C thuộc đường tròn tâm O bán kính R sao cho AC bằng R .kẻ OH vuông góc với AC tại H . qua điểm C vẽ một tiếp tuyến của đường tròn tâm O bán kính R tiếp tuyến này cắt đường thẳng OH tại D
Câu a/ chứng minh AD là tiếp tuyến của đường tròn tâm O bán kính R
Câu b/ tính BC theo R và tỉ số lượng giác của góc ABC
Cau c/ gọi M là điểm thuộc tia đối của tia CA . chứng minh MC nhân với MA bằng MO bình phương trừ AO bình phương
Cho đường tròn tâm O bán kính R điểm A nằm ngoài đường trong tâm O sao cho AO=2R. từ A vẽ 2 tiếp tuyến AB,AC với đường tròn (BC là các tiếp điểm) đoạn thẳng OA cắt đường tròn tâm O tại I đường thẳng qua O và vuông góc với OB cắt AC tại K.Chứng minh rằng: a, Tam giác OAK cân tại A b,KI là tiếp tuyến của đường tròn tâm O
a: góc KOA+góc BOA=90 độ
góc KAO+góc COA=90 độ
mà góc BOA=góc COA
nên góc KOA=góc KAO
=>ΔKAO cân tại K
b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2
nên góc BAO=30 độ
=>góc BOA=60 độ
Xét ΔOBI có OB=OI và góc BOI=60 độ
nên ΔOBI đều
=>OI=OB=1/2OA=R
=>I là trung điểm của OA
ΔKAO cân tại K
mà KI là trung tuyến
nên KI vuông góc với OI
=>KI là tiếp tuyến của (O)
Cho đường tròn (O;R), đường kính AC, trên bán kính OA lấy điểm B tùy ý (B khác O và A). Vẽ đường tròn tâm N đường kính AB. Gọi M là trung điểm của BC. Qua M vẽ dây DE vuông góc với BC, AD cắt (N) tại I.
a. CM tứ giác BMDI nội tiếp
b. 3 điểm I, B, E thẳng hàng
c. MI là tiếp tuyến của (N)
d. đường tròn tâm D bán kính DM cắt (O) tại P và Q. CM PQ qua trung điểm của MD.
Giúp tớ câu d với
Ta có: ^BIC = 90o (do chắn đk BC)
mà ^OMD = 90o (do DE _|_AB)
=> tg BDMI nội tiếp
Do OA _|_DE tại M => MD=ME (đường kính vuông góc với dây chia đôi dây)
=> ADBE là hình thoi vì có 2 đường chéo vuông góc với nhau tại trung điểm mỗi đường
Ta có ^ADC =90o (do chắn đường kính AC)
=> AD _|_CD
mà BI _|_CD (cm trên)
=> BI//AD (1*)
Do ADBE là hình thoi => BE//AD (2*)
Từ (1*, 2*) => I, B, E thẳng hàng
Bài IV (3,5 điểm) Cho nửa đường tròn tâm O, bán kính R, đường kính AB. Điểm C thuộc đoạn AB (C khác B;A). Trên cùng nửa mặt phẳng bờ AB có chứa nửa (O;R). Vẽ nửa đường tròn tâm I, đường kính AC và nửa đường tròn tâm J, đường kính BC. Qua C kẻ đường thẳng vuông góc với AB cắt (O;R) tại D. DA cắt nửa đường tròn tâm I tại M, DB cắt nửa đường tròn tâm J tại N
1) Chứng minh rằng: Tứ giác MDNC là hình chữ nhật
2) Chứng minh rằng: Tứ giác AMNB nội tiếp.
3) Chứng minh rằng: OD vuông góc MN
4) Tìm vị trí của C trên AB để bán kính đường tròn ngoại tiếp tứ giác AMNB lớn nhất.