Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
123 nhan

Cho đường tròn tâm O , bán kính r , đường kính AB , dây AC không qua tâm , H là trung điểm AC. a) Tính góc ACB và chứng minh OH song song với BC b) Tiếp tuyến tại C của đường tròn O cắt tia OH ở M. CM: MA là tiếp tuyến tại A của đường tròn

Nguyễn Lê Phước Thịnh
6 tháng 12 2023 lúc 12:33

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó:ΔACB vuông tại C

=>\(\widehat{ACB}=90^0\)

Ta có: ΔOAC cân tại O(OA=OC)

mà OH là đường trung tuyến

nên OH\(\perp\)AC và OH là tia phân giác của góc AOC

Ta có: OH\(\perp\)AC(cmt)

AC\(\perp\)CB tại C(Do ΔACB vuông tại C)

Do đó: OH//BC

b:

OH là phân giác của góc AOC

=>\(\widehat{AOH}=\widehat{COH}\)

mà M\(\in\)OH

nên \(\widehat{AOM}=\widehat{COM}\)

Xét ΔOCM và ΔOAM có

OC=OA

\(\widehat{COM}=\widehat{AOM}\)

OM chung

Do đó: ΔOCM=ΔOAM

=>\(\widehat{OCM}=\widehat{OAM}\)

mà \(\widehat{OCM}=90^0\)

nên \(\widehat{OAM}=90^0\)

=>OA\(\perp\)MA tại A

=>MA là tiếp tuyến tại A của (O)


Các câu hỏi tương tự
Đinh Đức Tài
Xem chi tiết
Linh Nguyen
Xem chi tiết
nguyen thi mai anh
Xem chi tiết
hoangtran
Xem chi tiết
Dark Knight Rises
Xem chi tiết
Channel Gamer For YT
Xem chi tiết
Pham Trong Bach
Xem chi tiết
hongngoc
Xem chi tiết
Phạm Mỹ Duyên
Xem chi tiết