Cho đường tròn (O; R) đường kính BC và một điểm A nằm trên đường tròn sao
cho AB = R. Gọi H là trung điểm của dây cung AC.
a) Tính số đo các góc của tam giác ABC.
b) Qua C vẽ tiếp tuyến của đường tròn (O) cắt tia OH tại D. Chứng minh DA là tiếp
tuyến của đường tròn (O).
c) Tính độ dài bán kính của đường tròn ngoại tiếp tam giác ACD theo R.
d) Trên tia đối của tia AC lấy điểm M, từ M vẽ hai tiếp tuyến ME và MF với đường
tròn (O) tại E và F. Chứng minh ba điểm D, E, F thẳng hàng.
Cho đường tròn (O;3cm) đường kính BC. Vẽ dây AD vuông góc với BC tại H sao cho BH=1cm ( vẽ hình+ làm bài)
a) Tính độ dài AH
b) Trên bán kính OB lấy điểm E sao cho H là trung điểm của BE. Chứng minh tứ giác ABDE là hình thoi.
c) kéo dài DE cắt AC tại F. Chứng minh rằng AC là tiếp tuyến của đường tròn tâm E bán kính bằng 2/3 AB
d) Qua điểm H vẽ dây MN bất kì của đường tròn (O). Tìm giá trị nhỏ nhất của MN
Cho đường tròn tâm O bán kính R và dây BC cố định không đi qua O, A là điểm chuyển động trên cung lớn BC. Vẽ hai đường cao BE và CF của tam giác ABC cắt nhau tại H.
a) Chứng minh rằng: \(\widehat{AFE}=\widehat{ACB}\)
b) Kẻ bán kinh ON vuông góc với BC tại M. AN cắt BC tại D. Chứng minh rằng: AB.NC = AN.BD
Cho đường tròn (O,R)cò đường kính AB. Vẽ đường tròn tâm I đường kính OA
Câu a :Chứng minh hai đường tròn ( O ), ( I ) tiếp xúc nhau
Câu b :Vẽ dây CD vuông góc với AB tại trung điểm K của OB. chứng minh tứ giác OCBD là hình thoi . Tính diện tích OCBD theo R
Giải hộ mk vs ạk. ths mấy p nhju
cho đường tròn tâm O có bán kính OA = R, dây BC vuông góc với OA tại trung điểm M của OA .
a.Tứ giác OCAB là hình gì? Vì sao.
b.kẻ tiếp tuyến với đường tròn O tại B cắt OA tại E. Tính độ dài BE theo R.
c.Gọi D là điểm đối xứng với A qua OB. chứng minh DC là đường tròn ( O;R)
Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O) sao cho OA = 2R. Từ A vẽ tiếp tuyến AB của đường tròn (O) (B là tiếp điểm).
1) Chứng minh tam giác ABO vuông tại B và tính độ dài AB theo R (1đ)
2) Từ B vẽ dây cung BC của (O) vuông góc với cạnh OA tại H. Chứng minh AC là tiếp tuyến của đường tròn (O). (1đ)
3) Chứng minh tam giác ABC đều. (1đ)
4) Từ H vẽ đường thẳng vuông góc với AB tại D. Đường tròn đường kính AC cắt cạnh DC tại E. Gọi F là trung điểm của cạnh OB. Chứng minh ba điểm A, E, F thẳng hàng. (0.5đ)
cho đường tròn tâm O bán kính R đường kính AB. Vẽ điểm C thuộc đường tròn tâm O bán kính R sao cho AC bằng R .kẻ OH vuông góc với AC tại H . qua điểm C vẽ một tiếp tuyến của đường tròn tâm O bán kính R tiếp tuyến này cắt đường thẳng OH tại D
Câu a/ chứng minh AD là tiếp tuyến của đường tròn tâm O bán kính R
Câu b/ tính BC theo R và tỉ số lượng giác của góc ABC
Cau c/ gọi M là điểm thuộc tia đối của tia CA . chứng minh MC nhân với MA bằng MO bình phương trừ AO bình phương
Cho đường trong tâm O bán kính R đường kính AB. Lấy điểm H thuộc OB, dây MN vuông góc với AB tại điểm H. Hạ HE vuông góc với MA, HF vuông góc với MB. Tiếp tuyến của đường tròn tại M cắt AB tại K , đường thẳng EF vắt AB tại I.
A/ Chứng minh : I là trung điểm của HK
B/ Lấy điểm Q đối xứng với M qua A. Chứng minh : Khi điểm H chuyển động trên đoạn OB thì Q thuộc 1 đường tròn cố định.
Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.
a) Vì sao AD là đường kính của đường tròn(O)
b) Tính góc ∠ACD
c) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)
Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:
a) Chu vi tam giác IMC lớn hơn 2R
b) Chu vi tam giác ABC lớn hơn 4R
Bài 3: Cho tam giác ABC có D, E, F theo thứ tự là trung điểm BC, CA, AB. G, H, I theo thứ tự là chân đường cao từ đỉnh A, B, C. Trực tâm tam giác ABC là S. J, K, L theo thứ tự là trung điểm của SA, SB, SC. Chứng minh rằng: 9 điểm D, E, F, G, H, I, J, K, L cùng thuộc đường tròn. ( Gợi ý: đường tròn đường kính JD)
Bài 4: Cho tam giác ABC nội tiếp(O), H là trực tâm tam giác ABC. Gọi D, E, F thứ tự là trung điểm của BC, CA, AB. Đường tròn tâm D bán kính DH cắt BC tại A1, A2, đường tròn tâm E bán kính EH cắt CA tại B1, B2, đường tròn tâm F bán kính FH cắt AB tại C1, C2.
a) : Chứng minh 3 đường thẳng DD' , EE' , FF' đồng quy ( DD' song song với OA, EE' song songvới OB, FF' song song với OC ).
b) Chứng minh 6 điểm A1, A2, B1, B2, C1, C2 nằm trên một đường tròn.