RRútgọn biểu thức B= \(\frac{X}{X^2+X+1}+X-1\)
Tim x để B=0
Cho biểu thức :B=\(\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)
a) Rút gọn B
b) Tim x de B =\(\frac{-3}{5}\)
c)Tim x de B<0
a) B=(\(\frac{21}{x^2-9}\)-\(\frac{x-4}{3-x}\)-\(\frac{x-1}{3+x}\)) : (1-\(\frac{1}{x+3}\)) (ĐK: x khác +-3)
=(\(\frac{21}{\left(x-3\right).\left(x+3\right)}\)+\(\frac{x-4}{x-3}\)-\(\frac{x-1}{x+3}\)) : (1-\(\frac{1}{x+3}\))
=(\(\frac{21+\left(x+4\right).\left(x+3\right)-\left(x-1\right).\left(x-3\right)}{\left(x-3\right).\left(x+3\right)}\):(\(\frac{x+3-1}{x+3}\))
=(\(\frac{3x+6}{\left(x-3\right).\left(x+3\right)}\)) . (\(\frac{x+3}{x+2}\))
=(\(\frac{3.\left(x+2\right)}{\left(x-3\right).\left(x+3\right)}\). \(\frac{x+3}{x+2}\)
=\(\frac{3}{x-3}\)
b) B=\(\frac{3}{x-3}\)=\(\frac{-3}{5}\)
(=) \(\frac{3.5}{x-3}\)=-3
(=) -3.(x-3) = 15
(=) -3x=6
(=) x=-2
vậy x=2 thì B=\(\frac{-3}{5}\)
c) B=\(\frac{3}{x-3}\)<0
(=) 3 < x - 3
(=) -x < - 3 - 3
(=) x > 6
Vậy với x > 6 thì B < 0
\(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{x+3}\right):\left(1-\frac{1}{x+3}\right)\)
\(B=\left[\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-4\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(x-3\right)}{\left(x+1\right)\left(x+3\right)}\right]\) \(:\left[\frac{x+3-1}{x+3}\right]\)
\(B=\frac{21+x^2-x-12-x^2+4x-3}{\left(x-3\right)\left(x+3\right)}:\frac{x+2}{x+3}\)
\(B=\frac{3x+6}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{x+2}\)
\(B=\frac{3.\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{x+2}\)
\(B=\frac{3}{x-3}\)
b) \(B=\frac{-3}{5}\Leftrightarrow\frac{3}{x-3}=\frac{-3}{5}\)
\(\Leftrightarrow-3x+9=15\)
\(\Leftrightarrow-3x=6\)
\(\Leftrightarrow x=-2\)
vậy....
c) \(B< 0\Leftrightarrow\frac{3}{x-3}< 0\)
\(\Leftrightarrow x-3< 0\) vì \(3>0\)
\(\Leftrightarrow x< 3\)
vậy....
Cho biểu thức: \(B=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
a,Tim điều kiện xác định của B.
b, Tìm x để B=0; \(B=\frac{1}{4}\)
c, Tìm x để B>0; B<0.
Bài 1: Cho biểu thức : P = \(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{-x+x\sqrt{x}+6}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Rút gọn P
b) Cho biểu thức \(Q=\frac{\left(x+27\right)P}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\), với x ≥ 0, x ≠ 1, x ≠ 4
Bài 2: Cho biểu thức \(A=\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}:\frac{-1}{-x^2+\sqrt{x}}\); \(B=x^4-5x^2-8x+2025\). Vs x > 0, x ≠ 1
a) Rút gọn A
b) Tìm giá trị của x để biểu thức T = B - 2A2 đạt GTNN
Bài 3: Cho biểu thức: \(P=\frac{2\sqrt{x}-1}{\sqrt{x}-1}-\frac{2\sqrt{x}+1}{\sqrt{x}+1}\) vs x ≥ 0, x ≠ 1
a) Rút gọn P
b) Tìm giá trị của x để P = \(\frac{3}{4}\)
c) Tìm GTNN của biểu thức A = \(\left(\sqrt{x}-4\right)\left(x-1\right).P\)
Bài 4: Cho biểu thức: \(A=\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}-2}-\frac{1}{1-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\); vs x ≥ 0, x ≠ 1
a) Rút gọn A
b) Tìm x để \(\frac{1}{A}\) là 1 số tự nhiên
Cho biểu thức: (x > 0; x/= 1)
a/ Rút gọn biểu thức A.
b/ Tìm x để A>0.
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{2}{x-1}\right)\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(a,A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{2}{x-1}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x\left(\sqrt{x}-1\right)}\right):\left(\frac{1-\sqrt{x}}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}-\frac{2}{1-x}\right)\)
\(=\left(\frac{x.\sqrt{x}}{x.\left(\sqrt{x}-1\right)}-\frac{1}{x\left(\sqrt{x}-1\right)}\right):\left(\frac{1-\sqrt{x}}{1-x}-\frac{2}{1-x}\right)\)
\(=\frac{x.\sqrt{x}-1}{x\left(\sqrt{x}-1\right)}.\frac{1-x}{-\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(x.\sqrt{x}-1\right)\left(1-x\right)}{x\left(1-x\right)}=\frac{\sqrt{x^3}-1}{x}\)
\(b,\)\(A=\frac{\sqrt{x}^3-1}{x}=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x}\)
Để A > 0 \(\Rightarrow\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x}>0\)
Mà \(x>0\)và \(x+\sqrt{x}+1>0\)( do x lớn hơn 0 )
\(\Rightarrow\sqrt{x}-1>0\)
\(\Rightarrow\sqrt{x}>1\Leftrightarrow\sqrt{x}>\sqrt{1}\Leftrightarrow x>1\)
bài 1 : cho biểu thức
A = \(\left(\frac{\sqrt{x}}{\sqrt{x-1}}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{2}{x-1}\right)\)
a, tìm điều kiện xác định của x để biểu thức A có nghĩa
b, Rút gọn biểu thức A
c, tính các giá trị cửa x để A>0
bài 2 giải phương trình
a, \(\sqrt{2}.x^2-\sqrt{98}=0\)
bài 3 cho biểu thức
A= \(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+1\left(x>0\right)\)
a, rút gọn biểu thức A
b, tìm x để A =2
Giúp mình với tối mai đi hc rồi
Cho biểu thức: B = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\) với x > 0, x ≠ 1
a, Rút gọn biểu thức B
b, Tìm giá trị của x để biểu thức B có giá trị nhỏ hơn \(\frac{1}{2}\)
\(B=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
Để \(B< \frac{1}{2}\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}}< \frac{1}{2}\Rightarrow2\sqrt{x}-2< \sqrt{x}\) (do \(\sqrt{x}>0\))
\(\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\Rightarrow\left\{{}\begin{matrix}0< x< 4\\x\ne1\end{matrix}\right.\)
Cho hai biểu thức $A=\frac{4 \sqrt{x}}{\sqrt{x}-1} ; B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}$ với $x \geq 0 ; x \neq 1$
1. Tính giá trị biểu thức $A$ khi $x=49$;
2. Chứng minh $B=\frac{\sqrt{x}+1}{\sqrt{x}-1}$;
3. Cho $P=A: B$. Tìm giá trị của $x$ để $P(\sqrt{x}+1)=x+4+\sqrt{x-4}$.
Em gửi ảnh trên ạ !!!!!
a, Ta có \(x=49\Rightarrow\sqrt{x}=7\)
Thay vào biểu thức A ta được :
\(A=\frac{7.4}{7-1}=\frac{28}{6}=\frac{14}{3}\)
b, Với \(x\ge0;x\ne1\)
\(B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}=\frac{\sqrt{x}-1+x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)( đpcm )
Bài 1: Cho biểu thức: \(\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)
a) Hãy tìm điều kiện của x để biểu thức được xác định.
b) Rút gọn biểu thức.
Bài 2: Cho biểu thức: \(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
a) Rút gọn biểu thức A.
b) Tính giá trị biểu thức A tại x, biết |x| = \(\frac{1}{2}\)
c) Tìm giá trị của x để A < 0.
HELP ME !!! :)
Bài 1:
ĐKXĐ: \(x\ne\left\{-1;1\right\}\)
\(P=\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right).\frac{4\left(x^2-1\right)}{5}\)
\(P=\left(\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x+3\right)}{2\left(x-1\right)\left(x+1\right)}\right).\frac{4\left(x^2-1\right)}{5}\)
\(P=\left(\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x^2-1\right)}\right)\frac{4\left(x^2-1\right)}{5}\)
\(P=\frac{10.4.\left(x^2-1\right)}{2\left(x^2-1\right).5}=\frac{40}{10}=4\)
Bài 2:
ĐK: \(x\ne\left\{-2;2;\right\}\)
\(A=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2}{x-2}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\right)\)
\(A=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right).\frac{x+2}{6}\)
\(A=\left(\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)}{6}\)
\(A=\frac{-6\left(x+2\right)}{6\left(x-2\right)\left(x+2\right)}=\frac{-1}{x-2}\)
b/ \(\left|x\right|=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}A=\frac{-1}{\frac{1}{2}-2}=\frac{2}{3}\\A=\frac{-1}{-\frac{1}{2}-2}=\frac{2}{5}\end{matrix}\right.\)
c/ \(A< 0\Rightarrow\frac{-1}{x-2}< 0\Rightarrow\frac{1}{x-2}>0\Rightarrow x-2>0\Rightarrow x>2\)
\(\)
1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)
a) Rút gọn biểu thức A
b) Tính giá trị của A khi x=9
c) Tìm x để A=5
d) Tìm x để A<1
e) Tìm giá trị nguyên của x để A nhận giá trị nguyên
2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)
b) Rút gọn biểu thức A
c) So sánh giá trị biểu thức A với 1
d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)
1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)
a) Rút gọn biểu thức A
b) Tính giá trị của A khi x=9
c) Tìm x để A=5
d) Tìm x để A<1
e) Tìm giá trị nguyên của x để A nhận giá trị nguyên
2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)
b) Rút gọn biểu thức A
c) So sánh giá trị biểu thức A với 1
d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)