Giải phương trình: \(\frac{x}{x^2+x+1}+\frac{2x}{x^2+2x+1}=\frac{8}{15}\)
Giải phương trình:
\(\sqrt{x}-2\left(x-\frac{1}{x}\right)=\frac{1}{2x^3}-\frac{1}{2x\sqrt{x}}\)
ĐKXĐ: \(x>0\)
Ta có:
\(-\sqrt{x}-2\left(x-\frac{1}{x}\right)=\frac{1}{2x^3}-\frac{1}{2x\sqrt{x}}\)
\(\Leftrightarrow-\sqrt{x}+\frac{1}{2x\sqrt{x}}=\frac{1}{2x^3}+2x-\frac{2}{x}\)
\(\frac{\Leftrightarrow1}{2x\sqrt{x}}-\sqrt{x}=2\left(x-\frac{1}{x}+\frac{1}{4x^3}\right)\)
Đặt : \(\frac{1}{2x\sqrt{x}}-\sqrt{x}=a\Rightarrow a^2=x-\frac{1}{x}+\frac{1}{4x^3}\)
Khi đó pt đã cho trở thành:
\(a=2a^2\Leftrightarrow\orbr{\begin{cases}a=0\\a=\frac{1}{2}\end{cases}}\)
+) a = 0\(\Rightarrow x=\frac{1}{\sqrt{2}}\)
Tương tự
Giải phương trình: \(\frac{9}{4(x+4)^2}+1=\frac{8}{(2x+5)^2}\)
ĐKXĐ: ...
\(\Leftrightarrow\frac{9\left(2x+5\right)^2}{4\left(x+4\right)^2}+\left(2x+5\right)^2=8\)
\(\Leftrightarrow\frac{9\left(2x+5\right)^2}{4\left(x+4\right)^2}-2.\frac{3\left(2x+5\right)}{2\left(x+4\right)}.\left(2x+5\right)+\left(2x+5\right)^2+\frac{3\left(2x+5\right)^2}{x+4}=8\)
\(\Leftrightarrow\left(\left(2x+5\right)-\frac{3\left(2x+5\right)}{2\left(x+4\right)}\right)^2+\frac{3\left(2x+5\right)^2}{x+4}=8\)
\(\Leftrightarrow\left(\frac{\left(2x+5\right)^2}{2\left(x+4\right)}\right)^2+\frac{3\left(2x+5\right)^2}{x+4}-8=0\)
Đặt \(\frac{\left(2x+5\right)^2}{x+4}=a\)
\(\Leftrightarrow\frac{a^2}{4}+3a-8=0\)
Nghiệm xấu, bạn tự giải nốt
giải phương trình sau :
\(\frac{2x}{x+1}\)\(=\frac{x^2-x+8}{\left(x+1\right)\left(x+1\right)}\)
\(\frac{2x}{x+1}=\frac{x^2-x+8}{\left(x+1\right)\cdot\left(x-4\right)}\\ \Leftrightarrow\frac{2x^2-8x}{\left(x+1\right)\cdot\left(x-4\right)}-\frac{x^2-x+8}{\left(x+1\right)\cdot\left(x-4\right)}=0\\ \Leftrightarrow\frac{2x^2-8x-x^2+x-8}{\left(x+1\right)\cdot\left(x-4\right)}=0\\ \Leftrightarrow\frac{x^2-7x-8}{\left(x+1\right)\cdot\left(x-4\right)}=0\\ \Leftrightarrow x^2-7x-8=0\\ \Rightarrow\left[{}\begin{matrix}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{matrix}\right.\)
\(\frac{2x}{x+1}=\frac{x^2-x+8}{\left(x+1\right)\left(x+1\right)}\) (ĐKXĐ: x \(\ne\) 1)
\(\Leftrightarrow\) \(\frac{2x\left(x+1\right)}{\left(x+1\right)\left(x+1\right)}=\frac{x^2-x+8}{\left(x+1\right)\left(x+1\right)}\)
\(\Leftrightarrow\) 2x(x + 1) = x2 - x + 8
\(\Leftrightarrow\) 2x2 + 2x - x2 + x - 8 = 0
\(\Leftrightarrow\) x2 + 3x - 8 = 0
\(\Leftrightarrow\) (x + \(\frac{3}{2}\))2 - \(\frac{41}{4}\) = 0
\(\Leftrightarrow\) (x + \(\frac{3}{2}\) - \(\frac{\sqrt{41}}{2}\))(x + \(\frac{3}{2}\) + \(\frac{\sqrt{41}}{2}\)) = 0
\(\Leftrightarrow\) (x + \(\frac{3-\sqrt{41}}{2}\))(x + \(\frac{3+\sqrt{41}}{2}\)) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{3-\sqrt{41}}{2}=0\\x+\frac{3+\sqrt{41}}{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{41}-3}{2}\\x=\frac{-3-\sqrt{41}}{2}\end{matrix}\right.\)
Vậy S = {\(\frac{\sqrt{41}-3}{2}\); \(\frac{-3-\sqrt{41}}{2}\)}
Chúc bn học tốt!!
Giải phương trình sau
\(\frac{x}{x+1}\)-\(\frac{2x-3}{x-3}\)=\(\frac{8}{x^2-x-6}\)
Bạn xem lại xem có viết nhầm đề bài không thế?
Giải phương trình
\(\frac{3x+1}{2x^2+3x-2}+\frac{1}{x^2-1}=\frac{1}{x^2+3x}\)
C1: giải các phương trình sau:
a) 4x +5\(=\)1
b) -5x +2 \(=\)14
c) 6x -3 \(=\)8x +9
d) 7x -5 \(=\)13 -5x
e) 2-3x \(=\) 5x +10
f ) 13 - 7x \(=\) 4x -20
C2: giải các phương trình sau:
a) 2(7x +10) + 5 =3(2x -3) -9x
b) (x+1)(2x-3)=(2x-1)(x+5)
c) 2x + x(x+1)(x-1)= (x+1)(x2 - x +1)
d) (x-1)3 -x(x+1)2 = 5x(2 -x)-11(x+2)
C3: giải các phương trình sau:
a) \(\frac{2\left(x-3\right)}{4}-\frac{1}{2}=\frac{6x+9}{3}-2\)
b) \(\frac{2\left(3x+1\right)+1}{4}-5\frac{2\left(3x-1\right)}{5}-\frac{3x+2}{10}\)
c) \(\frac{x}{3}+\frac{x-2}{4}=0,5x-2,5\)
d) \(\frac{2x-4}{3}-2x=\frac{6x+3}{5}+\frac{1}{15}\)
giải phương trình:
\(\frac{3x+1}{2x^2+3x-2}+\frac{1}{x^2-1}=\frac{1}{x^2+3x}\)
Giải phương trình: \(\frac{1}{x+1}+\frac{2}{1+\sqrt{x}}=\frac{2+\sqrt{x}}{2x}\)
Help me ;D
Đặt \(\sqrt{x}=t\left(t>0\right)\)
\(\Leftrightarrow\frac{1}{1+t^2}+\frac{2}{1+t}=\frac{2+t}{2t^2}\)
\(\Leftrightarrow\frac{1+t+2t+2t^2}{\left(1+t\right)\left(1+t^2\right)}=\frac{2+t}{2t^2}\)
\(\Leftrightarrow\frac{2t^2+3t+1}{\left(1+t\right)\left(1+t^2\right)}=\frac{2+t}{2t^2}\)
\(\Leftrightarrow\frac{\left(t+1\right)\left(2t+1\right)}{\left(1+t\right)\left(1+t^2\right)}=\frac{2+t}{2t^2}\)
\(\Leftrightarrow\frac{2t+1}{1+t^2}=\frac{2+t}{2t^2}\)
\(\Leftrightarrow2t^2\left(2t+1\right)=\left(2-t\right)\left(1+t^2\right)\)
\(\Leftrightarrow4t^3+2t^2=2+2t^2+1+t^3\)
\(\Leftrightarrow t=1\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)
Giải phương trình: \(\frac{12x}{x^2+4x+2}-\frac{3x}{x^2+2x+2}=1\)
\(x=0\) không phải nghiệm, pt tương đương:
\(\frac{12}{x+4+\frac{2}{x}}-\frac{3}{x+2+\frac{2}{x}}=1\)
Đặt \(x+2+\frac{2}{x}=a\)
\(\frac{12}{a+2}-\frac{3}{a}=1\Leftrightarrow12a-3\left(a+2\right)=a\left(a+2\right)\)
\(\Leftrightarrow a^2-7a+6=0\Rightarrow\left[{}\begin{matrix}a=1\\a=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+2+\frac{2}{x}=1\\x+2+\frac{2}{x}=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x+2=0\\x^2-4x+2=0\end{matrix}\right.\)