\(\frac{2x}{x+1}=\frac{x^2-x+8}{\left(x+1\right)\cdot\left(x-4\right)}\\ \Leftrightarrow\frac{2x^2-8x}{\left(x+1\right)\cdot\left(x-4\right)}-\frac{x^2-x+8}{\left(x+1\right)\cdot\left(x-4\right)}=0\\ \Leftrightarrow\frac{2x^2-8x-x^2+x-8}{\left(x+1\right)\cdot\left(x-4\right)}=0\\ \Leftrightarrow\frac{x^2-7x-8}{\left(x+1\right)\cdot\left(x-4\right)}=0\\ \Leftrightarrow x^2-7x-8=0\\ \Rightarrow\left[{}\begin{matrix}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{matrix}\right.\)
\(\frac{2x}{x+1}=\frac{x^2-x+8}{\left(x+1\right)\left(x+1\right)}\) (ĐKXĐ: x \(\ne\) 1)
\(\Leftrightarrow\) \(\frac{2x\left(x+1\right)}{\left(x+1\right)\left(x+1\right)}=\frac{x^2-x+8}{\left(x+1\right)\left(x+1\right)}\)
\(\Leftrightarrow\) 2x(x + 1) = x2 - x + 8
\(\Leftrightarrow\) 2x2 + 2x - x2 + x - 8 = 0
\(\Leftrightarrow\) x2 + 3x - 8 = 0
\(\Leftrightarrow\) (x + \(\frac{3}{2}\))2 - \(\frac{41}{4}\) = 0
\(\Leftrightarrow\) (x + \(\frac{3}{2}\) - \(\frac{\sqrt{41}}{2}\))(x + \(\frac{3}{2}\) + \(\frac{\sqrt{41}}{2}\)) = 0
\(\Leftrightarrow\) (x + \(\frac{3-\sqrt{41}}{2}\))(x + \(\frac{3+\sqrt{41}}{2}\)) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{3-\sqrt{41}}{2}=0\\x+\frac{3+\sqrt{41}}{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{41}-3}{2}\\x=\frac{-3-\sqrt{41}}{2}\end{matrix}\right.\)
Vậy S = {\(\frac{\sqrt{41}-3}{2}\); \(\frac{-3-\sqrt{41}}{2}\)}
Chúc bn học tốt!!