Tìm GTLN và GTNN (nếu có)
A=\(\frac{3}{12-2x-x^2}\)
Giup mk vs
Tìm gtnn và gtln của \(y=\frac{3}{2+\sqrt{2x-x^2+3}}\) giup mih vs
Xét \(P=\sqrt{2x-x^2+3}=\sqrt{4-\left(x^2-2x+1\right)}=\sqrt{4-\left(x-1\right)^2}\le\sqrt{4}=2\)
ĐK: \(\left(x-1\right)^2\le4\Leftrightarrow-2\le x-1\le2\Leftrightarrow-1\le x\le3\)
GTNN của P = 0 khi x = -1 hoặc 3 => GTLN của y = 3/2
GTLN của P = 2 khi x = 1 => GTNN của y = 3/4.
Tìm GTLN,GTNN ( nếu có )
A= 10x^2+y^2+6xy-8y+18
B= -x^2-5y^2+4xy-2y-3
giúp mk vs nhé mn. Mk đang cần gấp
Tìm GTLN,GTNN biết(nếu có):
A=2.|x+3|+|2x+8|
Phương pháp tách cho dẽ hiểu
*nghiệm x=-3 và x=-4
chia khoảng
* x<=-4=> A=-2x-6-2x-8=-4x-14 => GTNN A=A(-4)=16-14=2
*-4<=x<=-3=>A=-2x-6+2x+8=8-6=2 A hs
*x>=-3=>A=2x+6+2x+8=4x+14 A nho nhất khi x=-3=> GTNNA=-3.4+14=2
* kết luận GTNN của A la 2
Khi -4<=x<=3
dùng bất đẳng thức trị tuyệt đối không biết bạn có hiểu ko?
!a!+!b!>=!a+b! đẳng thức xẩy ra khi a,b khác dâu" nếu hiểu áp vào ra ngay.
Tìm GTLN và GTNN (nếu có) của M = \(\frac{4x+1}{x^2+3}\)
Cho a,b,c ? 0 và a + b + c = 3. Tìm GTNN của A = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng bdtd quen thuộc :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Chứng minh bđt nha ( quên mất )
Áp dụng bđt Cauchy :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)
Nhân từng vế của 2 bđt ta được đpcm
Dấu "=" khi \(a=b=c\)
\(M=\frac{4x+1}{x^2+3}\)
\(\Leftrightarrow Mx^2+3M=4x+1\)
\(\Leftrightarrow Mx^2-4x+3M-1=0\)(1)
*Nếu M = 0 thì x = -1/4
*Nếu M khác 0 thì (1) có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow4-M\left(3M-1\right)\ge0\)
\(\Leftrightarrow4-3M^2+M\ge0\)
\(\Leftrightarrow-1\le M\le\frac{4}{3}\)
Bài 11. Tìm GTNN của
a/ A= x^2 – 4x + 2
b/ B= 4x^2 + 4x – 1
c/ C= x^2 + x
Bài 12. Tìm GTLN của
a) A= 2- 6x – 9x^2
b) B= (5-x)(3+x)
c/ = - 2x^2 + 4x
MN GIÚP MIK NHANH VS Ạ
Tìm GTNN và GTLN của \(A=\frac{x^2+2x+3}{x^2+2}\)
Tìm GTLN,GTNN biết ( nếu có)
A=2.|x+3|+|2x+8|
B= x-|x|
A = 2/x+3/+/2x+8/ ta có /2x+8/>bằng 0 => /2x+8/+2/x+3/>bằng 0 nên GTLN là 0 cậu phải tìm giá trị của x để thoả mãn nhé nếu không sẽ không có điểm đâu
B=x-/x/ thì x<bằng /x/nên x-/x/<bằng 0 nên GTLN là 0 cậu phải tìm giá trị của x để thoả mãn nhé nếu không sẽ không có điểm đâu nhélike nhé
Tìm GTLN,GTNN( nếu có)
A= 10x^2+y^2+6xy-8y+18
giúp mk vs nhé mn
1. Tìm GTNN của bt:
Q=|7x-5y|+|2z-3x|+|xy+yz+zx-2000|
2. Cho (a-b)^2 +6ab=36. Tìm GTLN của bt:
A=a.b
3. Tìm GTLN của các bt sau vs x thuộc Z :
a/ A=17/13-x
b/B = 32-2x/11-x
Giúp mình vs mai mk cần rồi . Mk tick cho!!!
1/ Câu hỏi của Jey - Toán lớp 7 - Học toán với OnlineMath
2/ \(\left(a-b\right)^2+6ab=36\Rightarrow6ab=36-\left(a-b\right)^2\le36\Rightarrow ab\le\frac{36}{6}=6\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)
Vậy abmax = 6 khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)
3/
a, Để A đạt gtln <=> 17/13-x đạt gtln <=> 13-x đạt gtnn và 13-x > 0
=> 13-x = 1 => x = 12
Khi đó \(A=\frac{17}{13-12}=17\)
Vậy Amax = 17 khi x = 12
b, \(B=\frac{32-2x}{11-x}=\frac{22-2x+10}{11-x}=\frac{2\left(11-x\right)+10}{11-x}=2+\frac{10}{11-x}\)
Để B đạt gtln <=> \(\frac{10}{11-x}\) đạt gtln <=> 11-x đạt gtnn và 11-x > 0
=>11-x=1 => x=10
Khi đó \(B=\frac{10}{11-10}=10\)
Vậy Bmax = 10 khi x=10