tìm TXĐ
1 , \(y=\cos\frac{x+1}{x+2}\)
2, \(y=\sin\sqrt{x+4}\)
3, \(y=\cos\sqrt{x^2-3x+2}\)
tìm TXĐ
1 , \(y=\cos\frac{x+1}{x+2}\)
2, \(y=\sin\sqrt{x+4}\)
3, \(y=\cos\sqrt{x^2-3x+2}\)
a/ \(x+2\ne0\Rightarrow x\ne-2\)
b/ \(x+4\ge0\Rightarrow x\ge-4\)
c/ \(x^2-3x+2\ge0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\)
Tìm Max, Min của hàm số:
1) \(y=\dfrac{x+1+\sqrt{x-1}}{x+1+2\sqrt{x-1}}\)
2) \(y=\sin^{2016}x+\cos^{2016}x\)
3) \(y=2\cos x-\dfrac{4}{3}\cos^3x\) trên \(\left[0;\dfrac{\pi}{2}\right]\)
4) \(y=\sin2x-\sqrt{2}x+1,x\in\left[0;\dfrac{\pi}{2}\right]\)
5) \(y=\dfrac{4-cos^2x}{\sqrt{sin^4x+1}},x\in\left[-\dfrac{\pi}{3};\dfrac{\pi}{3}\right]\)
Tìm txđ của hàm số sau:
1.\(y=\sqrt{\dfrac{1+cosx}{1-cosx}}\)
2.\(y=\dfrac{3}{sin^2x-cos^2x}\)
3.\(y=cos\left(x-\dfrac{\pi}{3}\right)+tan2x\)
1. Hàm số xác định `<=> 1-cosx \ne 0<=>cosx \ne 1<=>x \ne k2π`
Vì: `1+cosx >=0 forallx ; 1-cosx >=0 forall x`
2. Hàm số xác định `<=> sin^2x \ne cos^2x <=> (1-cos2x)/2 \ne (1+cos2x)/2`
`<=>cos2x \ne 0<=> 2x \ne π/2+kπ <=> x \ne π/4+kπ/2`
3. Hàm số xác định `<=> cos2x \ne 0<=> x \ne π/4+kπ/2 (k \in ZZ)`.
tìm TXĐ
1.y=\(\frac{1}{\sin x}+\frac{1}{\cos x}\)
2.y=\(\sqrt{3-\sin x}\)
3.y=\(\sqrt{\frac{\sin^2x}{1+\sin x}}\)
4.y=\(\tan\left(2x-\frac{\Pi}{4}\right)\)
ĐKXĐ:
a. \(sinx.cosx\ne0\Leftrightarrow sin2x\ne0\)
\(\Rightarrow2x\ne k\pi\Rightarrow x\ne\frac{k\pi}{2}\)
b. ĐKXĐ: \(3-sinx\ge0\Rightarrow sinx\le3\) (luôn đúng)
TXĐ của hàm số là R
c. ĐKXĐ: \(\left\{{}\begin{matrix}\frac{sin^2x}{1+sinx}>0\\1+sinx\ne0\end{matrix}\right.\)
\(\Rightarrow sinx\ne-1\Rightarrow x\ne-\frac{\pi}{2}+k2\pi\)
d. \(cos\left(2x-\frac{\pi}{4}\right)\ne0\Leftrightarrow2x-\frac{\pi}{4}\ne\frac{\pi}{2}+k\pi\)
\(\Rightarrow x\ne\frac{3\pi}{8}+\frac{k\pi}{2}\)
1. Cho A = \(x^2-3x\sqrt{y}+2y\)
a) Phân tích A thành phân tử
b) Tìm A khi \(x=\frac{1}{\sqrt{5}-2};y=\frac{1}{9+4\sqrt{5}}\)
2. Rút gọn
a) A = \(\frac{1+2\sin x.\cos x}{\sin x+\cos x}\)
b) B = \(\cot x+\frac{\sin x}{1+\cos x}\)
tìm TXĐ của
1.y=sin3x
2.y=cosx/2
3.y=\(\sqrt{\frac{\sin x+2}{\cos x+1}}\)
Lời giải:
1. TXĐ: $x\in\mathbb{R}$
2. TXĐ: $x\in\mathbb{R}$
3.
ĐKXĐ: \(\left\{\begin{matrix} \cos x+1\neq 0\\ \frac{\sin x+2}{\cos x+1}\geq 0\end{matrix}\right.\Leftrightarrow \cos x\neq -1\)
\(x\neq \pi (2k+1)\) với $k$ nguyên.
Vậy TXĐ là \(x\in\mathbb{R}|\frac{x-\pi}{2\pi}\not\in\mathbb{Z}\)
Tìm đạo hàm các hàm số:
1, \(y=\tan(3x-\dfrac{\pi}{4})+\cot(2x-\dfrac{\pi}{3})+\cos(x+\dfrac{\pi}{6})\)
2, \(y=\dfrac{\sqrt{\sin x+2}}{2x+1}\)
3, \(y=\cos(3x+\dfrac{\pi}{3})-\sin(2x+\dfrac{\pi}{6})+\cot(x+\dfrac{\pi}{4})\)
a.
\(y'=\dfrac{3}{cos^2\left(3x-\dfrac{\pi}{4}\right)}-\dfrac{2}{sin^2\left(2x-\dfrac{\pi}{3}\right)}-sin\left(x+\dfrac{\pi}{6}\right)\)
b.
\(y'=\dfrac{\dfrac{\left(2x+1\right)cosx}{2\sqrt{sinx+2}}-2\sqrt{sinx+2}}{\left(2x+1\right)^2}=\dfrac{\left(2x+1\right)cosx-4\left(sinx+2\right)}{\left(2x+1\right)^2}\)
c.
\(y'=-3sin\left(3x+\dfrac{\pi}{3}\right)-2cos\left(2x+\dfrac{\pi}{6}\right)-\dfrac{1}{sin^2\left(x+\dfrac{\pi}{4}\right)}\)
\(y=\dfrac{1}{\left(x^2-2x+5\right)^2}\)
y=2sin3xcos5x
\(y=\left(1+\sqrt{1-2x}\right)^3\)
\(y=x^2\sin\left(3x-1\right)\)
\(y=\dfrac{\sin x+\cos x}{\sin x-\cos x}\)
tìm max, min
a) y=\(\dfrac{\sqrt{x-1}}{x}\) trên \([1;5]\)
b) y=\(\dfrac{x+3}{\sqrt{x^2+1}}\) trên \([1;3]\)
c) y=\(\sin^2x-\cos x+1\)
d) y=\(\sin^3x-3\sin^2x+2\)
a0
a.
\(y'=\dfrac{2-x}{2x^2\sqrt{x-1}}=0\Rightarrow x=2\)
\(y\left(1\right)=0\) ; \(y\left(2\right)=\dfrac{1}{2}\) ; \(y\left(5\right)=\dfrac{2}{5}\)
\(\Rightarrow y_{min}=y\left(1\right)=0\)
\(y_{max}=y\left(2\right)=\dfrac{1}{2}\)
b.
\(y'=\dfrac{1-3x}{\sqrt{\left(x^2+1\right)^3}}< 0\) ; \(\forall x\in\left[1;3\right]\Rightarrow\) hàm nghịch biến trên [1;3]
\(\Rightarrow y_{max}=y\left(1\right)=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)
\(y_{min}=y\left(3\right)=\dfrac{6}{\sqrt{10}}=\dfrac{3\sqrt{10}}{5}\)
c.
\(y=1-cos^2x-cosx+1=-cos^2x-cosx+2\)
Đặt \(cosx=t\Rightarrow t\in\left[-1;1\right]\)
\(y=f\left(t\right)=-t^2-t+2\)
\(f'\left(t\right)=-2t-1=0\Rightarrow t=-\dfrac{1}{2}\)
\(f\left(-1\right)=2\) ; \(f\left(1\right)=0\) ; \(f\left(-\dfrac{1}{2}\right)=\dfrac{9}{4}\)
\(\Rightarrow y_{min}=0\) ; \(y_{max}=\dfrac{9}{4}\)
d.
Đặt \(sinx=t\Rightarrow t\in\left[-1;1\right]\)
\(y=f\left(t\right)=t^3-3t^2+2\Rightarrow f'\left(t\right)=3t^2-6t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\notin\left[-1;1\right]\end{matrix}\right.\)
\(f\left(-1\right)=-2\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=2\)
\(\Rightarrow y_{min}=-2\) ; \(y_{max}=2\)