Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Lê
Xem chi tiết
Nguyễn Xuân Tiến 24
29 tháng 10 2017 lúc 20:57

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=[\left(a+b\right)^3+c^3]-[3ab\left(a+b\right)+3abc]=\left(a+b+c\right)[\left(a+b\right)^2-\left(a+b\right)c+c^3]-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-3ab-ab-bc-ca\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

võ xuân nhi
29 tháng 10 2017 lúc 21:12

Ta có : (a+b+c)(a2+b2+c2-ab-bc-ca)

=a3+ab2+ac2-a2b-abc-ca2+a2b+b3+bc2-ab2-b2c-abc+a2c+cb2+c3-abc-bc2-c2a

Trừ đi các hạng tử đồng dạng ta có kết quả :

=a3+b3+c3-3abc

Vậy : a3+b3+c3-3abc = (a+b+c)(a2+b2+c2-ab-bc-ca)

Phạm Thùy Linh
Xem chi tiết
Trần Việt Linh
21 tháng 10 2016 lúc 23:05

a) Biến đổi vế phải ta có:

\(\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)=a^3+b^3=VT\)

Vậy đẳng thức trên đc chứng minh

b) Sai đề sửa lại

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Biến đổi vế trái ta có:

\(a^3+b^3+c^3-3abc\)

\(=\left(a^3+b^3\right)+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)-3abc+c^3\)

\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=VP\)

Vậy đẳng thức trên đc chứng minh

Dennis
30 tháng 1 2017 lúc 9:57

a) Biến đổi vế phải ta được :

(a + b)3 - 3ab(a + b)

= a3 + 3a2b + 3ab2 + b3 - 3ab(a + b)

= a3 + b3 + ( 3a2b + 3ab2 ) - 3ab( a + b)

= a3 + b3 + 3ab( a+ b) - 3ab( a + b)

= a3+ b3 = VT

=> a3 + b3 = ( a+b)3 - 3ab( a + b)

Vô Danh
Xem chi tiết
❤️ HUMANS PLAY MODE ❤️
30 tháng 4 2020 lúc 20:37

cố quá = quá cố

Khách vãng lai đã xóa
Phạm
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Công Minh Hoàng
Xem chi tiết
tth_new
9 tháng 2 2020 lúc 8:34

Đặt \(a+b+c=3u;ab+bc+ca=3v^2;abc=w^3\)

BĐT \(\Leftrightarrow\) \(54u^3-54uv^2+9w^3\ge3v^2\)  

\(\Leftrightarrow54u^3-63uv^2+9w^3\ge0\)

\(\Leftrightarrow9\left(w^3+3u^3-4uv^2\right)+27u\left(u^2-v^2\right)\ge0\)

Đúng theo BĐT Schur bậc 3: \(w^3+3u^3\ge4uv^2\) và BĐT quen thuộc: \(u^2\ge v^2\)

P/s: Ko chắc ạ..

Khách vãng lai đã xóa
hoaan
Xem chi tiết
Không Tên
24 tháng 7 2018 lúc 22:07

a)  \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3ab\left(a+b\right)+3\left(a+b\right)\left(ac+bc+c^2\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

b)  \(VT=a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)

Hoàng
Xem chi tiết
Đặng Nguyễn Khánh Uyên
Xem chi tiết
Thảo Nguyên Xanh
6 tháng 2 2017 lúc 20:10

Biến đổi vế trài ta có

a3+b3+c3-3abc+3ab(a+b)-3ab(a+b)

=(a+b)(a2-ab+b2)-3ab(a+b+c)+3ab(a+b)+c3

=(a+b)(a+b)2+c3-3ab(a+B+c)

=......................

Bn cứ nhóm lại là = vế phải.

Mạc Thu Hà
10 tháng 3 2017 lúc 15:55

bạn thiếu dấu cộng giữa b2 và cvì vậy vế phải là (a+b+c)(a2+b2+c2 -ab-bc-ac)

Ta có : a3+b3+c3 -3abc = (a+b)3 -3ab(a+b)+c3 -3abc = (a+b)3 +c3  -3ab(a+b+c)

                                   =(a+b+c)3 -3(a+b)c(a+b+c)-3ab(a+b+c)

                                   =(a+b+c)((a+b+c)2-3(ac+bc)-3ab)

                                   =(a+b+c)(a2+b2+c2 +2ab +2ac +2bc -3ab -3bc -3ac )

                                   =(a+b+c)(a2+b+c2-ab-bc-ac)=vp (đpcm)

Songoku Sky Fc11
5 tháng 8 2017 lúc 6:07
 

Có: a3+b3+c33abc

=a3+3a2b+3ab2+b3+c33a2b3ab23abc

=(a+b)3+c33ab(a+b+c)

=(a+b+c)(a2+2ab+b2(a+b)c+c2)3ab(a+b+c)

=(a+b+c)(a2+b2+c2+2abacbc3ab)

=(a+b+c)(a2+b2+c2abacbc)(đpcm)