Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn thành Đạt
Xem chi tiết
Lê Song Phương
3 tháng 9 2023 lúc 22:03

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)

Bảo Bình
Xem chi tiết
Trang
7 tháng 12 2019 lúc 19:38

a) ĐK : \(x\ge\frac{2}{3}\)\(\sqrt{3x-2}-\sqrt{x+7}=1\Leftrightarrow3x-2-2\sqrt{\left(3x-2\right)\left(x+7\right)}+x+7=1\)

\(\Leftrightarrow4x+5-1=2\sqrt{3x^2+19x-14}\Leftrightarrow2x+2=\sqrt{3x^2+19x-14}\)

\(\Leftrightarrow4x^2+8x+4=3x^2+19x-14\)

\(\Leftrightarrow x^2-11x+18=0\Leftrightarrow\left[{}\begin{matrix}x=9\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

b) ĐK \(x\ge-\frac{1}{5}\)\(\sqrt{14x+7}-\sqrt{2x+3}=\sqrt{5x+1}\Leftrightarrow14x+7+2x+3-5x-1-2\sqrt{28x^2+42x+14x+21}=0\)

\(\Leftrightarrow11x+9=2\sqrt{28x^2+56x+21}\Leftrightarrow121x^2+81+198x=112x^2+224x+84\)

\(\Leftrightarrow9x^2-26x-3=0\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-\frac{1}{9}\left(loai\right)\end{matrix}\right.\)

c) \(\sqrt{x^2+2x+6}-\sqrt{x^2+x+2}=1\)

\(\Leftrightarrow x^2+2x+6=x^2+x+2+1+2\sqrt{x^2+x+2}\)

\(\Leftrightarrow x+3=2\sqrt{x^2+x+2}\)

\(\Leftrightarrow x^2+6x+9=4x^2+4x+8\)

\(\Leftrightarrow3x^2-2x-1=0\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-\frac{1}{3}\left(tm\right)\end{matrix}\right.\)

Khách vãng lai đã xóa
uyen
Xem chi tiết
Tran Le Khanh Linh
28 tháng 3 2020 lúc 18:51

a) \(4\sqrt{x}+\frac{2}{\sqrt{x}}< 2x+\frac{1}{2x}+2\)

hay \(2\sqrt{x}+\frac{1}{\sqrt{x}}< x+\frac{1}{4x}+1\)

\(\Leftrightarrow0< x+\frac{1}{4x}+1-2\sqrt{x}-\frac{1}{\sqrt{x}}\)

\(\Leftrightarrow0< \left(\sqrt{x}\right)^2-2\sqrt{x}-2\sqrt{x}\cdot1+1+\frac{1}{\left(2\sqrt{x}\right)^2}-2\cdot\frac{1}{2\sqrt{x}}\)

\(\Leftrightarrow1< \left(\sqrt{x}-1\right)^2+\left(\frac{1}{2\sqrt{x}}-1\right)^2\)

\(\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}>1\\2\sqrt{x}>1\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>\frac{1}{4}\end{cases}\Rightarrow}x>1}\)

b) \(\frac{1}{1-x^2}>\frac{3}{\sqrt{1-x^2}}-1\left(1\right)\left(ĐK:-1< x< 1\right)\)

Ta có (1) <=> \(\frac{1}{1-x^2}-1-\frac{3x}{\sqrt{1-x^2}}+2>0\)\(\Leftrightarrow\frac{x^2}{1-x^2}-\frac{3x}{\sqrt{1-x^2}}+2>0\)

Đặt \(t=\frac{x}{\sqrt{1-x^2}}\)ta được

\(t^2-3t+2>0\Leftrightarrow\orbr{\begin{cases}\frac{x}{\sqrt{1-x^2}}< 1\\\frac{x}{\sqrt{1-x^2}}>2\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{1-x^2}>x\left(a\right)\\2\sqrt{1-x^2}< x\left(b\right)\end{cases}}}\)

(a) <=> \(\hept{\begin{cases}x< 0\\1-x^2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\1-x^2>x^2\end{cases}}}\)

\(\Leftrightarrow-1< x< 0\)hoặc \(\hept{\begin{cases}x\ge0\\x^2< \frac{1}{2}\end{cases}}\)

\(\Leftrightarrow-1< x< 0\)hoặc \(0\le x\le\frac{\sqrt{2}}{2}\Leftrightarrow-1< x< \frac{\sqrt{2}}{2}\)

(b) \(\Leftrightarrow\hept{\begin{cases}1-x^2>0\\x>0\\4\left(1-x^2\right)< x^2\end{cases}\Leftrightarrow\hept{\begin{cases}0< x< 1\\x^2>\frac{4}{5}\end{cases}\Leftrightarrow}\frac{2}{\sqrt{5}}< x< 1}\)

Khách vãng lai đã xóa
IS
28 tháng 3 2020 lúc 18:02

ok đợi nấu ăn xong r làm cho

Khách vãng lai đã xóa
IS
28 tháng 3 2020 lúc 18:47

a) điều kiện x>0

khi đó

\(\left(a\right)\Leftrightarrow4\left(\sqrt{4}+\frac{1}{2\sqrt{x}}\right)< 2\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)^2\)

\(\Leftrightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}>2\Leftrightarrow2x-4\sqrt{x}+1>0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}< \frac{2-\sqrt{2}}{2}\\\sqrt{x}>\frac{2+\sqrt{2}}{2}\end{cases}}\)

Khách vãng lai đã xóa
do thuy
Xem chi tiết
:vvv
Xem chi tiết
Akai Haruma
18 tháng 6 2021 lúc 22:48

Lời giải:
Đặt $\sqrt[3]{x+1}=a;\sqrt[3]{x-1}=b$ thì pt trở thành:

\(\left\{\begin{matrix} a^2+b^2+ab=1\\ a^3-b^3=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2+ab+b^2=1\\ (a-b)(a^2+ab+b^2)=2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a^2+ab+b^2=1\\ a-b=2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} (a-b)^2+3ab=1\\ a-b=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a(-b)=1\\ a+(-b)=2\end{matrix}\right.\)

Theo đl Viet đảo thì $a,-b$ là nghiệm của pt $X^2-2X+1=0$

$\Rightarrow a=-b=1$

$\Leftrightarrow \sqrt[3]{x+1}=1; \sqrt[3]{x-1}=-1$

$\Rightarrow x=0$

Vậy.........

Ngn Van Anhh
Xem chi tiết
Vuy năm bờ xuy
31 tháng 5 2021 lúc 23:30

undefinedChúc bạn học tốt

:vvv
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 6 2021 lúc 17:56

Bạn kiểm tra lại đề bài

hằng hồ thị hằng
Xem chi tiết
Akai Haruma
29 tháng 5 2021 lúc 23:01

Bài 1:

Vì $a\geq 1$ nên:

\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)

\(\geq 1+\sqrt{4}+0=3\)

Ta có đpcm

Dấu "=" xảy ra khi $a=1$

 

Akai Haruma
29 tháng 5 2021 lúc 23:04

Bài 2:
ĐKXĐ: x\geq -3$

Xét hàm:

\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)

\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)

Do đó $f(x)$ đồng biến trên TXĐ

\(\Rightarrow f(x)=0\) có nghiệm duy nhất

Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.

Ngô Đức Hùng
Xem chi tiết
ngonhuminh
5 tháng 12 2016 lúc 10:57

Dk: x\(\ge0\)

lien hop

\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x+3}=2\Rightarrow x=1\)

Ngô Đức Hùng
7 tháng 12 2016 lúc 10:38

B​ạn có thể giải thích rõ hộ mình dc k???

Ngô Đức Hùng
7 tháng 12 2016 lúc 10:43

oh ok mình hiểu r thanks =)))