Tính giá trị nhỏ nhất của biểu thức A=5x^2-6x+5/x^2-2x+1
bài :
a, tìm giá trị nhỏ nhất của biểu thức
A=x\(^2\)=5x=7
b< tìm giá trị lớn nhất của biểu thức
B=6x-x\(^2\)-5
Tìm giá trị lớn nhất, nhỏ nhất (nếu có) của các biểu thức sau: x^2-4x+10; (1-x)(3x-4); 3x^2-9x+5; -2x^2+5x+2; -3x^2-6x+5; x^4-2x^2+3.
\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2
\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)
\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6
\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2
\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4
tính giá trị lớn nhất và giá trị nhỏ nhất của các biểu thức sau:
a) A= 1-8x-x^2
b) B= 5-2x+x^2
c) C= x^2+4y^2-6x+8y-2021
a) \(A=1-8x-x^2=-\left(x^2+8x+16\right)+17=-\left(x-4\right)^2+17\le17\)
\(ĐTXR\Leftrightarrow x=4\)
b) \(B=5-2x+x^2=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
\(ĐTXR\Leftrightarrow x=1\)
c) \(C=x^2+4y^2-6x+8y-2021=\left(x^2-6y+9\right)+\left(4y^2+8y+4\right)-2034=\left(x-3\right)^2+\left(2y+2\right)^2-2034\ge-2034\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
a: Ta có: \(A=-x^2-8x+1\)
\(=-\left(x^2+8x-1\right)\)
\(=-\left(x^2+8x+16-17\right)\)
\(=-\left(x+4\right)^2+17\le17\forall x\)
Dấu '=' xảy ra khi x=-4
b: Ta có: \(x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
a) Tìm giá trị nhỏ nhất của biểu thức
A= x2 +5x +7
b) Tìn giá trị lớn nhất của biểu thức
B=6x-x2-5
a,A=x^2+2.x.5/2+25/4+3/4
=(x+5/2)2+3/4
nx:(x+5/2)^2 luôn> hoặc = 0 nên (x+5/2)^2+3/4 >hoặc =3/4
vậy GTNN của A là 3/4
b,B=6x-x2-5
= - (x2-6x+5)
= - (x2-2.x.3+9-4)
=-[(x-3)2-4]
=-(x-3)^2+4
nx; -(x-3)^2 luôn nhỏ hơn hoặc bằng 0 nên -(x-3)^2 +4 luôn < hoặc= 4
Vậy GTLN của B là 4
tìm giá trị lớn nhất của biểu thức
a) 2x-2xy-2x2-y2
tìm giá trị nhỏ nhất của biểu thức
a) (x-1)(x+2)(x+3)(x+6)
b) 5x2+y2-6x+5y+1
c) x2-2x+y-4y+6
Bài 1: Tìm giá trị:
a) Nhỏ nhất của biểu thức: A = x2 + 5x + 7
b) Lớn nhất của biểu thức: B = 6x - x2 - 5
V1.a)Ta có : \(A=x^2+5x+7=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)
Ta có : \(\left(x+\frac{5}{2}\right)^2\ge0=>\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "="xảy ra khi \(x+\frac{5}{2}=0=>x=-\frac{5}{2}\)
Vậy\(A_{min}=\frac{3}{4}\) khi \(x=-\frac{5}{2}\)
b)Ta có : \(B=6x-x^2-5=-\left(x^2-6x+5\right)=-[\left(x-3\right)^2-4]\)
Ta có : \(\left(x-3\right)^2\ge0=>B\le4\)
Dấu "="xảy ra khi (x-3)=0=>x=3
Vậy \(B_{mãx}=4\)khi x=3
Bài 1: Tìm giá trị:
a) Nhỏ nhất của biểu thức: A = x2 + 5x + 7
Giải phương trình trên máy tính
Lặp 3 lần dấu" = "
kq : GTNN của A = \(-\frac{5}{2}\)
b) Lớn nhất của biểu thức: B = 6x - x2 - 5
B = -x2 + 6x - 5
Giải phương trình trên máy tính
Lặp 3 dấu " = "
kq : GTLN của B = 3
a)
A = x2 + 5x + 7
= (x2 + 2 . 2,5 . x + 6,25) + (7 - 6,25)
= (x + 2,5)2 + 0,75 \(\ge\)0,75
Dấu "=" xảy ra <=> x + 2,5 = 0
=> x = -2,5.
Vậy A (min) = 0,75 <=> x = -2,5.
b) B = 6x - x2 - 5
= - (x2 - 6x) - 5
= - (x2 - 2 . x . 3 + 9) + (-5 + 9)
= - (x - 3)2 + 4
Do (x - 3) > 0 nên - (x - 3)2 < 0
=> B \(\le\)4
Dấu "=" xảy ra <=> x - 3 = 0
=> x = 3
Vậy B (max) = 4 <=> x = 3.
P/s: Chúc bạn học tốt^^!
Tính giá trị nhỏ nhất của biểu thức A=\(\frac{5x^2-6x+5}{x^2-2x+1}\)
\(A=\frac{4\left(x^2-2x+1\right)+\left(x^2+2x+1\right)}{x^2-2x+1}\) \(=4+\frac{\left(x+1\right)^2}{\left(x-1\right)^2}\ge4\forall x\)
Dấu "=" \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Vậy \(A_{min}=4\Leftrightarrow x=-1\)
\(A=\frac{5x^2-6x+5}{x^2-2x+1}\)
\(\Leftrightarrow\)\(Ax^2-5x^2-2Ax+6x+A-5=0\)
\(\Leftrightarrow\)\(\left(A-5\right)x^2-2\left(A-3\right)x+\left(A-5\right)=0\)
+) Nếu \(A=5\) thì \(x=0\)
+) Nếu \(A\ne5\) thì pt có nghiệm \(\Leftrightarrow\)\(\Delta\ge0\)
\(\Leftrightarrow\)\(\left(3-A\right)^2-\left(A-5\right)^2\ge0\)
\(\Leftrightarrow\)\(\left(3-A-A+5\right)\left(3-A+A-5\right)\ge0\)
\(\Leftrightarrow\)\(-2\left(-2A+8\right)\ge0\)
\(\Leftrightarrow\)\(A\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-1\)
Cách này thường dùng để tìm Min + Max nhé
1) Tìm giá trị nhỏ nhất của các biểu thức: A=(x-3)^2+(x-4)^2,B= 5x^2+25y^2-20xy-2x-10y+2,C=(x+1).(x-2).(x-3).(x-6) 2) Tìm giá trị lớn nhất của các biểu thức :A=20+6x-3x^2,B=-x^2-10y^2+2xy-6x+18y=15
tìm giá trị nhỏ nhất của biểu thức A= \(\frac{2x^2-6x+5}{x^2-2x+1}\)
\(A=\frac{2x^2-6x+5}{x^2-2x+1}=\frac{x^2-4x+4+x^2-2x+1}{x^2-2x+1}\)
\(=\frac{\left(x-2\right)^2+\left(x-1\right)^2}{\left(x-1\right)^2}=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\)
Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge0\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\ge1\)
\(\Rightarrow A\ge1\).Nên GTNN của \(A=1\) đạt được khi \(x=2\)