Xác định các hệ số a,b,c
\(\left(x^2+cx+2\right)\left(ax+b\right)=x^3+x^2-2\)với mọi x
xác định hệ số a,b,c biết: \(\left(x^2+cx+2\right)\left(ax+b\right)=x^3-x^2+2\) với mọi x
Khai triển VT, ta có: \(VT=ax^3+\left(b+ac\right)x^2+\left(bc+2a\right)x+2b=x^3-x^2+2\)
Đồng nhất hệ số ta có hệ điều kiện:
\(\left\{{}\begin{matrix}a=1\\b+ac=-1\\bc+2a=0\\2b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=-2\end{matrix}\right.\)
Xác định a,b,c,d thỏa mãn đẳng thức với mọi x
a,\(\left(ax+b\right)\left(x^2+cx+1\right)=7x^3-3x+2\)
b, \(x^4+ax^2+b=\left(x^2-3x+2\right)\left(x^2+cx+d\right)\)
TÌm các hệ số a,b,c
\(\left(ax+b\right)\left(x^2-cx+2\right)\)=\(x^3+x^2-2\)với mọi x
( ax + b ) ( x2 - cx + 2 ) = x3a + bx2 - acx2 - bcx + 2ax + 2b = x3a + x2 ( b - ac ) - x ( bc - 2a ) + 2b
\(\Rightarrow\)x3a + x2 ( b - ac ) - x ( bc - 2a ) + 2b = x3 + x2 - 2
đồng nhất hê số, ta được : a = 1 ; b - ac = 1 ; bc - 2a = 0 ; 2b = -2
\(\Rightarrow\hept{\begin{cases}a=1\\b=-1\\c=-2\end{cases}}\)
Xác định hệ số a,b ,c biết rằng :
\(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)
Ta có :
\(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)
\(\Leftrightarrow ax^3+\left(b-a\right).x^2-\left(a+b\right).x-b\)
\(=ax^3+cx^2-1\)
\(\Leftrightarrow\hept{\begin{cases}b-a=c\\a+b=0\\b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-1\\b=1\\c=2\end{cases}}\)
Vậy ...
a) Xác định a,b,c,d để đa thức\(f\left(x\right)=ax^4+bx^3+cx^2+dx+c\) thoả mãn điều kiện \(f\left(x\right)-f\left(x-1\right)=x^3\) với mọi x và f(0) = 0
Xác định các hệ số a,b,c biết rằng
a / \(\left(2x-5\right)\left(3x+b\right)=ax^2+x+c\)
b / \(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)
a: =>6x^2+2xb-15x-5b=ax^2+x+c
=>6x^2+x(2b-15)-5b=ax^2+x+c
=>a=6; 2b-15=1; -5b=c
=>a=6; b=8; c=-40
b: =>ax^3-ax^2-ax+bx^2-bx-b=ax^3+cx^2-1
=>x^2(-a+b)+x(-a-b)-b=cx^2-1
=>-b=-1; -a+b=c; -a-b=0
=>b=1; c=b-a; a=-b=-1
=>c=b-a=1-(-1)=2; b=1; a=-1
Xác định hệ số a , b , c biết :
\(\left(x^2+cx+2\right)\left(cx+b\right)=x^3+x^2-2\)
\(\left(x^2+cx+2\right)\left(cx+b\right)=x^3+x^2-2\)
Vì đt trên đúng với mọi x nên cho x = 1
\(\Rightarrow\left(1+c+2\right)\left(c+b\right)=0\)
\(\hept{\begin{cases}c=-3\\c=-b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}c=-3\\b=3\end{cases};x=1}\)
Tìm các hệ thức a,b,c
a)\(2x^2\left(ax^2+2b+4c\right)=6x^{\text{4}}-20x^3-8x^2\)
Với mọi x
b)\(\left(ax+b\right)\left(x^2-cx+2\right)=x^3+x^2-2\)
Với mọi x
a) Sửa đề: \(2x^2\left(ax^2+2bx+4c\right)=6x^4-20x^3-8x^2\)
<=> \(2ax^4+4bx^3+8cx^2=6x^4-20x^3-8x^2\)
=> \(\left\{{}\begin{matrix}2a=6\\4b=-20\\8c=-8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=3\\b=-5\\c=-1\end{matrix}\right.\)
b) Ta có: \(\left(ax+b\right)\left(x^2-cx+2\right)=x^3+x^2-2\)
<=> \(ax^3-acx^2+2ax+bx^2-bcx+2b=x^3+x^2+2\)
<=> \(ax^3+x^2\left(b-ac\right)+x\left(2a-bc\right)+2b=x^3+x^2-2\)
=> \(\left\{{}\begin{matrix}ax^3=x^3\\\left(b-ac\right)x^2=x^2\\\left(2a-bc\right)x=0\\2b=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=1\\b-ac=1\\2a-bc=0\\b=-1\end{matrix}\right.\)
=> a,b,c ko có!
P/s: Đề có sai ko!
Cho hàm số \(y=f\left(x\right)=ax^2+bx+c\)
Xác định các hệ số \(a,b,c\) biết \(f\left(0\right)=1\),\(f\left(1\right)=2\),\(f\left(2\right)=4\)
Giúp mình với :3?
f(0) = 1
\(\Rightarrow\) a.02 + b.0 + c = 1
\(\Rightarrow\) c = 1
Vậy hệ số a = 0; b = 0; c = 1
f(1) = 2
\(\Rightarrow\) a.12 + b.1 + c = 2
\(\Rightarrow\) a + b + c = 2
Vậy hệ số a = 1; b = 1; c = 1
f(2) = 4
\(\Rightarrow\) a.22 + b.2 + c = 4
\(\Rightarrow\) 4a + 2b + c = 4
Vậy hệ số a = 4; b = 2; c = 1
Chúc bn học tốt! (chắc vậy :D)