Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đình Thuyên
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 11 2018 lúc 21:17

\(\left(k+1\right)C^k_n=kC^k_n+C^k_n=\dfrac{n!k}{k!\left(n-k\right)!}+C^k_n=\dfrac{\left(n-1\right)!n}{\left(k-1\right)!\left(n-1-k+1\right)!}+C^k_n=nC^{k-1}_{n-1}+C^k_n\)

\(\Rightarrow C^0_{2000}+\sum\limits^{2000}_{k=1}\left(k+1\right)C^k_{2000}=C^0_{2000}+\sum\limits^{2000}_{k=1}\left(2000C^{k-1}_{1999}+C^k_{2000}\right)=2000\sum\limits^{2000}_{k=1}C^{k-1}_{1999}+\sum\limits^{2000}_{k=0}C^k_{2000}\)

\(=2000.2^{1999}+2^{2000}=2^{1999}.2002\)

nguyen an
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2022 lúc 22:06

Chọn B

Trang-g Seola-a
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2020 lúc 8:46

a.

Xét khai triển:

\(\left(1+x\right)^{14}=C_{14}^0+C_{14}^1x+...+C_{14}^{14}x^{14}\)

Đạo hàm 2 vế:

\(14\left(1+x\right)^{13}=C_{14}^1+2C_{14}^2x+...+14C_{14}^{14}x^{13}\)

Cho \(x=-1\) ta được:

\(0=C_{14}^1-2C_{14}^2+...-14C_{14}^{14}\)

\(\Rightarrow S=0\)

b. Xét khai triển:

\(\left(1+2x\right)^9=C_9^0+C_9^1\left(2x\right)+C_9^2\left(2x\right)^2+...+C_9^9\left(2x\right)^9\)

\(=C_9^9+C_9^8\left(2x\right)+C_9^7\left(2x\right)^2+...+C_9^0\left(2x\right)^9\)

Đạo hàm 2 vế:

\(18\left(1+2x\right)^8=2C_9^8+2.2^3C_9^7x+3.2^4C_9^6x^2+...+9.2^9C_9^0x^8\)

\(\Rightarrow9\left(1+2x\right)^8=C_9^8+2.2^2C_9^7x+...+9.2^8C_9^0x^8\)

Cho \(x=-1\)

\(\Rightarrow9=C_9^8-2.2^2C_9^7+...+9.2^8C_9^0\)

\(\Rightarrow S=9\)

Tử Lam
Xem chi tiết
Mai Anh
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 11 2021 lúc 14:53

\(C_{n-1}^0+C_{n-1}^1+...+C_{n-1}^{n-1}=2^{n-1}\)

\(\Rightarrow S=n.2^{n-1}\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2020 lúc 17:21

Xét khai triển:

\(\left(1+x\right)^n=C_n^0+C_n^1x+...+C_n^nx^n\)

Cho \(x=1\) ta được:

\(C_n^0+C_n^1+...+C_n^n=2^n\)

Bài này chỉ cần thay \(n=15\)

vân vân
Xem chi tiết
Ngọc Trân
28 tháng 8 2017 lúc 15:50

số số hạng:

(2000-1):1+1=2000

Tổng:

(2000+1)x2000:2=2001000

Nguyễn Trần Thành An
28 tháng 8 2017 lúc 15:50

= (1+2000) * (2000/2) = 100050

Hỏa Long Natsu 2005
28 tháng 8 2017 lúc 15:50

[(2000-1):1+1]x(2000+1)/2=2000x2001/2=4002000/2=2001000

camcon
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 2 2023 lúc 22:26

Xét khai triển: 

\(\left(x+1\right)^{20}=C_{20}^0+C_{20}^1x+C_{20}^2x^2+...+C_{20}^{20}x^{20}\)

Chia 2 vế cho x ta được:

\(\dfrac{\left(x+1\right)^{20}}{x}=\dfrac{1}{x}+C_{20}^1+C_{20}^2x+...+C_{20}^{20}.x^{19}\)

Thay \(x=2\)

\(\Rightarrow\dfrac{3^{20}}{2}=\dfrac{1}{2}+C_{20}^1+2C_{20}^2+2^2C_{20}^3+...+2^{19}C_{20}^{20}\)

\(\Rightarrow S=\dfrac{3^{20}-1}{2}\)

2611
27 tháng 2 2023 lúc 22:28

`S=C_20 ^1 + 2C_20 ^2 + 2^2 C_20 ^3 +....+2^19 C_20 ^20`

`<=>2S=2C_20 ^1+2^2 C_20 ^2 + 2^3 C_20 + .... + 2^20 C_20 ^20`

`<=>2S=C_20 ^0 +2C_20 ^1+2^2 C_20 ^2 + 2^3 C_20 + .... + 2^20 C_20 ^20 -C_20 ^0`

`<=>2S=(1+2)^20-1`

`<=>2S=3^20-1`

`<=>S=[3^20 -1]/2`