Rút gọn B = (2x+3)\(^2\)-(4x+6)(x+1)+(x+1)\(^2\)
Cho A = \(\dfrac{x^2-4x+4}{2x^2-4x}\) (x ≠ 0, x ≠ 2)
a, Rút gọn A
b, Tính A khi x=\(\dfrac{1}{2}\)
a. \(\dfrac{\left(x-2\right)^2}{2x\left(x-2\right)}=\dfrac{x-2}{2x}\)
b. \(\dfrac{\dfrac{1}{2}-2}{2.\dfrac{1}{2}}=-1,5\)
a)Rút gọn \(A=\dfrac{x^2+2x-3}{x^2+3x-10}:\dfrac{x^2+x-6}{x^2-9x+14}.\dfrac{x^2-4x+3}{x^2+7x+10}\)
b) Tìm x để kết quả rút gọn của A > 0; A < 0; A = 0
1) Rút gọn: a-A=a-2+3-2a-5+a
A=?
2) A=\(\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6}{1-x}\)
Rút gọn \(\left(\dfrac{1+x}{x}+\dfrac{1}{4x^2}\right)\left(\dfrac{1-2x}{1+2x}-\dfrac{1}{1-4x^2}.\dfrac{1-4x+4x^2}{1+2x}\right)-\dfrac{1}{2x}\)
Haizzzzzzzzzzz!
ĐKXĐ: \(x\ne0;\dfrac{-1}{2};\dfrac{1}{2}\)
\(\left(\dfrac{1+x}{x}+\dfrac{1}{4x^2}\right)\left(\dfrac{1-2x}{1+2x}-\dfrac{1}{1-4x^2}.\dfrac{1-4x+4x^2}{1+2x}\right)-\dfrac{1}{2x}\)
=
\(\dfrac{4x\left(x+1\right)+1}{4x^2}.\left[\dfrac{\left(1-2x\right)\left(1+2x\right)}{\left(2x+1\right)^2}-\dfrac{1}{\left(1-2x\right)\left(1+2x\right)}.\dfrac{\left(1-2x\right)^2}{1+2x}\right]\)\(-\dfrac{1}{2x}\)
= \(\dfrac{\left(2x+1\right)^2}{4x^2}.\left(\dfrac{1-4x^2}{\left(2x+1\right)^2}-\dfrac{1-2x}{\left(2x+1\right)^2}\right)-\dfrac{1}{2x}\)
= \(\dfrac{\left(2x+1\right)^2}{4x^2}.\dfrac{2x\left(1-2x\right)}{\left(2x+1\right)^2}-\dfrac{1}{2x}\)
= \(\dfrac{1-2x}{2x}-\dfrac{1}{2x}=\dfrac{-2x}{2x}=1\)
Rút gọn : \(\left(\frac{1+x}{x}+\frac{1}{4x^2}\right)\left(\frac{1-2x}{1+2x}-\frac{1}{1-4x^2}\times\frac{1-4x+4x^2}{1+2x}\right)-\frac{1}{2x}\)
\(=\dfrac{4x\left(x+1\right)+1}{4x^2}\cdot\left(\dfrac{-\left(2x-1\right)}{2x+1}+\dfrac{1}{\left(2x+1\right)\left(2x-1\right)}\cdot\dfrac{\left(2x-1\right)^2}{2x+1}\right)-\dfrac{1}{2x}\)
\(=\dfrac{\left(2x+1\right)^2}{4x^2}\cdot\left(\dfrac{-\left(2x-1\right)}{2x+1}+\dfrac{2x-1}{\left(2x+1\right)^2}\right)-\dfrac{1}{2x}\)
\(=\dfrac{\left(2x+1\right)^2}{4x^2}\cdot\dfrac{-\left(2x-1\right)\left(2x+1\right)+2x-1}{\left(2x+1\right)^2}-\dfrac{1}{2x}\)
\(=\dfrac{-4x^2+1+2x-1}{4x^2}-\dfrac{1}{2x}\)
\(=\dfrac{-4x^2+2x}{4x^2}-\dfrac{1}{2x}\)
\(=\dfrac{-2x\left(2x-1\right)}{2x\cdot2x}-\dfrac{1}{2x}\)
\(=\dfrac{-2x+1-1}{2x}=\dfrac{-2x}{2x}=-1\)
Rút gọn A : \(\left[\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right]:\frac{2x}{x^3+x}\)
\(A=\left(\dfrac{x^2-2x+1}{x^2+x+1}-\dfrac{-2x^2+4x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right):\dfrac{2x}{x^3+x}\)
\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\)
\(=\dfrac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}=\dfrac{x^2+1}{2}\)
Q=((2x-x2) /2x2 +(8 - 2x2)/x3- 2x2+ 4x -8). (2/x2+ (1-x)/x
rút gọn Q
\(Q=\left(\dfrac{2x-x^2}{2x^2}+\dfrac{8-2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{2}{x^2}+\dfrac{1-x}{x}\right)\)
\(=\left(\dfrac{2-x}{2x}-\dfrac{2\left(x+2\right)}{x^2+4}\right)\cdot\dfrac{2+x-x^2}{x^2}\)
\(=\dfrac{2x^2+8-x^3-4x-4x\left(x+2\right)}{2x\left(x^2+4\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{2x^2+8-x^3-4x-4x^2-8x}{2x\left(x^2+4\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{-x^3-2x^2-12x+8}{2x\left(x^2+4\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{\left(x^3+2x^2+12x-8\right)\left(x-2\right)\left(x+1\right)}{2x^3\left(x^2+4\right)}\)
Rút gọn các phân thức sau
a, \(\dfrac{x^3-x}{3x+3}\)
b, \(\dfrac{x^2+4y^2-4xy-4}{2x^2-4xy+4x}\)
c, \(\dfrac{10x-15}{4x^2-9}\)
a: \(\dfrac{x^3-x}{3x+3}=\dfrac{x\left(x-1\right)\left(x+1\right)}{3\left(x+1\right)}=\dfrac{x\left(x-1\right)}{3}\)
b: \(\dfrac{x^2-4xy+4y^2-4}{2x^2-4xy+4x}\)
\(=\dfrac{\left(x-2y\right)^2-4}{2x\left(x-2y+2\right)}\)
\(=\dfrac{x-2y-2}{2x}\)
2x^3+4x^2/3.(x+2)
rút gọn
trình bày ra luôn