Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hương Giang
Xem chi tiết
Kenny
25 tháng 11 2021 lúc 8:25

\(\sqrt{4a^2+12a+9}+\sqrt{4a^2-12a+9}\) với \(-\dfrac{3}{2}\le a\le\dfrac{3}{2}\)

\(\sqrt{\left(2a+3\right)^3}+\sqrt{\left(2a-3\right)^3}\)

\(\left|2a+3\right|+\left|2a-3\right|\)

\(2a+3-2a+3\)

\(6\)

Đoàn Đặng Bảo Trâm
Xem chi tiết
Akai Haruma
30 tháng 6 2019 lúc 23:48

Lời giải:

\(\sqrt{\frac{9+12a+4a^2}{b^2}}=\sqrt{\frac{(2a)^2+2.2a.3+3^2}{b^2}}=\sqrt{\frac{(2a+3)^2}{b^2}}\)

\(=|\frac{2a+3}{b}|\)

Vì $a>-1,5; b< 0$ nên \(\frac{2a+3}{b}< 0\Rightarrow \sqrt{\frac{9+12a+4a^2}{b^2}}= |\frac{2a+3}{b}|=\frac{-2a-3}{b}\)

\((a-b)\sqrt{\frac{ab}{(a-b)^2}}=(a-b)\sqrt{ab}.\frac{1}{|a-b|}\)

Do $a< b< 0$ nên $a-b< 0\rightarrow |a-b|=b-a$

\(\Rightarrow (a-b)\sqrt{\frac{ab}{(a-b)^2}}=(a-b).\frac{\sqrt{ab}}{|a-b|}=(a-b).\frac{\sqrt{ab}}{b-a}=-\sqrt{ab}\)

Hoài Thu Vũ
Xem chi tiết
HT.Phong (9A5)
8 tháng 7 2023 lúc 17:46

a) \(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}=\left|3a^2\right|=3a^2\)

b) \(2\sqrt{a^2}-5a=2\left|a\right|-5a=-2a-5a=-7a\)

c) \(\sqrt{16\left(1+4x+4x^2\right)}=\sqrt{\left[4\left(1+2x\right)\right]^2}=\left|4\left(1+2x\right)\right|=4\left(1+2x\right)\)

 

Võ Thiên Long
Xem chi tiết
WonMaengGun
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2023 lúc 18:47

a: \(A=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+2\sqrt{x}\left(\sqrt{x}+2\right)-3x-4}{x-4}\)

\(=\dfrac{x-2\sqrt{x}+2x+4\sqrt{x}-3x-4}{x-4}\)

\(=\dfrac{2\sqrt{x}-4}{x-4}=\dfrac{2}{\sqrt{x}+2}\)

b: A=1/2

=>\(\sqrt{x}+2=4\)

=>\(\sqrt{x}=2\)

=>x=4(loại)

dang huynh
Xem chi tiết
Nao Tomori
Xem chi tiết
Trần Đức Thắng
3 tháng 8 2015 lúc 9:07

Với a = -9 C không có nghĩa 

Trần Đức Thắng
3 tháng 8 2015 lúc 9:16

Đẫ bảo là a = -9 thì biểu thức không tính đc mở máy tính ra BẤm  thử mà xem 

Khai Nguyen Duc
Xem chi tiết
Lấp La Lấp Lánh
21 tháng 9 2021 lúc 15:03

a) \(\sqrt{4a^2}=2\left|a\right|=-2a\) ( do a<0)

b) \(\sqrt{4x^2-12x+9}=\sqrt{\left(2x-3\right)^2}=\left|2x-3\right|=3-2x\)(do \(x< \dfrac{3}{2}\Leftrightarrow2x-3< 0\))

trương thị hà
Xem chi tiết
IS
10 tháng 4 2020 lúc 20:19

\(\Leftrightarrow C=\frac{\left(2+\sqrt{a}\right)^2-\left(2-\sqrt{a}\right)^2+4a}{\left(2-\sqrt{a}\right)\left(\sqrt{a}+2\right)}:\frac{2\sqrt{a}-\sqrt{a}-3}{\sqrt{a}\left(2-\sqrt{a}\right)}\)

\(\Leftrightarrow C=\frac{2\sqrt{a}+2\sqrt{a}+4a}{\left(2-\sqrt{a}\right)\left(\sqrt{a}+2\right)}.\frac{\left(2-\sqrt{a}\right).\sqrt{a}}{\sqrt{a}-3}=\frac{\left(4\sqrt{a}+4a\right)\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-3\right)}\)

b) Để C>0 thì \(\frac{4\left(a-\sqrt{a}\right)\sqrt{a}}{\left(\sqrt{a}+2\right)\sqrt{a}+3}>0hay\left(a-\sqrt{a}\right)>0=>a>1\)

c) bổ sung ý c) tìm a để C=-1

để B=-1

\(\Leftrightarrow\left(4\sqrt{a}+4a\right)\sqrt{a}=-\left(\sqrt{a}+2\right)\left(\sqrt{a}-3\right)\)

\(\Leftrightarrow4a+4a\sqrt{a}=-a+3\sqrt{a}-2\sqrt{a}+6\)

\(\Leftrightarrow5a+4a\sqrt{a}-\sqrt{a}-6=0=>\orbr{\begin{cases}\sqrt{a}=1\\5\sqrt{a}+4a-1=0\left(zô\right)lý\end{cases}=>a=1}\)

Khách vãng lai đã xóa