\(\frac{\sqrt{9+12a+4a^2}}{\sqrt{b^2}}\)
\(=\frac{\sqrt{\left(2a+3\right)^2}}{\sqrt{b^2}}\)
\(=\frac{2a+3}{-b}\)( theo điều kiện )
bố mày đéo biết
\(\frac{\sqrt{9+12a+4a^2}}{\sqrt{b^2}}\)
\(=\frac{\sqrt{3^2+2.3.2a+\left(2a\right)^2}}{\sqrt{b^2}}\)
\(=\frac{\sqrt{\left(3+2a\right)^2}}{\sqrt{b^2}}\)
\(=\frac{|3+2a|}{|b|}\)
Vì \(b< 0\Rightarrow|b|=-b\)
Vì \(a\ge-1.5\) nên \(3+2a\ge0\)
Vậy : | 3 + 2a | = 3 + 2a