a) Tìm m để đa thức A(x)=5mx2 - mx + 3m - 2 có nghiệm x=-1
a) Tìm m để đa thức A(x)=5mx2 - mx + 3m - 2 có nghiệm x=-2
Tìm m để:
a) Đa thức P(x) = x^2-mx+3m có 1 nghiệm là 5
b) Đa thức Q(x) = mx^2+2mx-3 nhận x=2 làm nghiệm
bạn chỉ cần thế nghiệm vào rồi tính m là đc rồi
cho các đa thức
f(x) = x^2 - (m-1)x+3m-2
g(x)= x^2 -2 (m+1) x-5m+1
h(x) = -2x^2 +mx - 7m +3
Tìm m biết :
a) đa thức f(x) có nghiệm là -1
b) đa thức g(x) có nghiệm là 2
c) đa thức h(x) có nghiệm là -1
d) f(1) = g(2) ; g(1) =h (-2)
a) \(f\left(x\right)=x^2-\left(m-1\right)x+3m-2\)
Để đa thức f(x) có nghiệm là -1 khi:
\(f\left(-1\right)=\left(-1\right)^2-\left(m-1\right).\left(-1\right)+3m-2=0\)
\(\Rightarrow1+m-1+3m-2=0\)
\(\Rightarrow4m=2\Rightarrow m=\dfrac{1}{2}\)
b) \(g\left(x\right)=x^2-2\left(m+1\right)x-5m+1\)
Để đa thức g(x) có nghiệm là 2 khi:
\(g\left(2\right)=2^2-2\left(m+1\right).2-5m+1=0\)
\(\Rightarrow4-4\left(m+1\right)-5m+1=0\)
\(\Rightarrow4-4m-1-5m+1=0\)
\(\Rightarrow-9m=-4\Rightarrow m=\dfrac{4}{9}\)
c) \(h\left(x\right)=-2x^2+mx-7m+3\)
Để đa thức h(x) có nghiệm là -1 khi:
\(h\left(-1\right)=-2\left(-1\right)^2+m.\left(-1\right)-7m+3=0\)
\(\Rightarrow-2-m-7m+3=0\)
\(\Rightarrow-8m=-1\Rightarrow m=\dfrac{1}{8}\)
d) -Để \(f\left(1\right)=g\left(2\right)\) khi và chỉ khi
\(1^2-\left(m-1\right).1+3m-2=2^2-2\left(m+1\right).2-5m+1\)
\(\Rightarrow1-m+1+3m-2=4-4m-4-5m+1\)
\(\Rightarrow11m=1\Rightarrow m=\dfrac{1}{11}\)
-Để \(g\left(1\right)=h\left(-2\right)\) khi và chỉ khi
\(1^2-2\left(m+1\right).1-5m+1=-2\left(-2\right)^2+m.\left(-2\right)-7m+3\)
\(\Rightarrow1-2m-2-5m+1=-8-2m-7m+3\)
\(\Rightarrow2m=-5\Rightarrow m=-\dfrac{5}{2}\)
Cho các đa thức: f(x) = x ^ 2 - (m - 1) * x + 3m - 2 g(x) = x ^ 2 - 2(m + 1)x - 5m + 1 h(x) = - 2x ^ 2 + mx - 7m + 3 Tìm m, biết: 1. Đa thức f có nghiệm là –1 2. Đa thức g có nghiệm là 2 3. Đa thức h có nghiệm là –1 4. f(1) = g(2) 5. g(1) = h(- 2)
1: f(-1)=0
=>1+m-1+3m-2=0 và
=>4m-2=0
=>m=1/2
2: g(2)=0
=>2^2-4(m+1)-5m+1=0
=>4-5m+1-4m-4=0
=>-9m+1=0
=>m=1/9
4: f(1)=g(2)
=>1-(m-1)+3m-2=4-4(m+1)-5m+1
=>1-m+1+3m-2=4-4m-4-5m+1
=>2m-2=-9m+1
=>11m=3
=>m=3/11
3:
H(-1)=0
=>-2-m-7m+3=0
=>-8m=-1
=>m=1/8
5: g(1)=h(-2)
=>1-2(m+1)-5m+1=-8-2m-7m+3
=>-5m+2-2m-2=-9m-5
=>-7m=-9m-5
=>2m=-5
=>m=-5/2
Bài 1:Tìm giá trị của m để đa thức
a) f(x)=mx^2+2x+8 có một nghiệm là -1
b) g(x)=x4+3m^2x^3+3mx có một nghiệm là 1
Bài 2:Cho đa thức F(x)=1+x+x^2+...+X^201;G(x)=-x-x^3-x^5-...-x^201
a) Chứng tỏ x=-1 là nghiệm của đa thức F(x)
b) Đặt H(x)=F(x)+G(x).Tính H(2)
Ai hỗ trợ e vs ạ,phần này e chưa có học đến
Cho các đa thức :
f(x)=x^2-(m-1)*x+3m-2;g(x)=x^2*(m+1)*x-5m+1;h(x)=-2x^2+mx-7m+3
Tìm m biết: a) Đa thức f(x) có nghiệm là -1;
b) Đa thức g(x) có nghiệm là 2;
c) Đa thức h(x) có nghiệm là -1;
d) f(1) = g(2); e) g(1) = h(-2).
a) Đa thức \(f\left(x\right)\)có nghiệm là \(-1\)nên \(f\left(-1\right)=0\)
\(\Rightarrow\left(-1\right)^2-\left(m-1\right)\left(-1\right)+3m-2=0\)
\(\Leftrightarrow1+m-1+3m-2=0\)
\(\Leftrightarrow m=\frac{1}{2}\).
b) c) Làm tương tự a).
d) \(f\left(1\right)=g\left(2\right)\)
\(\Rightarrow1^2-\left(m-1\right).1+3m-2=2^2+\left(m+1\right).2-5m+1\)
\(\Leftrightarrow1-m+1+3m-2=4+2m+2-5m+1\)
\(\Leftrightarrow5m=7\)
\(\Leftrightarrow m=\frac{7}{5}\)
e) Làm tương tự d).
b) c) e) bằng bn ạ?
Tìm m để:
a, Đa thức \(mx^3+x^2+x+1\) có 1 nghiệm là -1.
b, Đa thức \(x^4+m^2x^3+mx^2-1\) có 1 nghiệm là 1.
day la bai toan co ban bạn cho da thuc =0 roi bạn thay x= -1 la tim dc m
mk lam cho bạn bai dau nhé;
m(-1) + 1 - 1 +1 = 0
m =1
vay nhe quỳnh
1 Cho pt:\(x^2+2mx-3m^2=0\).Tìm m để pt có 2 nghiệm \(x_1< 1< x_2\)
2 Tìm m để pt sau có 2 nghiệm cùng dấu,khi đó 2 nghiệm mang dấu gì?
a)\(x^2-2mx+5m-4=0\)
b)\(mx^2+mx+3=0\)
3 Tìm m để pt \(\left(m+1\right)x^2+mx+3=0\) có 2 nghiệm cùng lớn hơn -1
Giúp em với huhu :<,bài nào cũng đc ạ,em cảm ơn!
3.
Phương trình có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)
Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)
Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)
Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải
1. Có 2 cách giải:
C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)
\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)
\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
2.
a. Pt có 2 nghiệm cùng dấu khi:
\(\left\{{}\begin{matrix}\Delta'=m^2-5m+4\ge0\\x_1x_2=5m-4>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\\m>\dfrac{4}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m\ge4\\\dfrac{4}{5}< m\le1\end{matrix}\right.\)
Khi đó \(x_1+x_2=2m>2.\dfrac{4}{5}>0\) nên 2 nghiệm cùng dương
b. Pt có 2 nghiệm cùng dấu khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta=m^2-12m\ge0\\x_1x_2=\dfrac{3}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge12\\m\le0\end{matrix}\right.\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge12\)
Khi đó \(x_1+x_2=-1< 0\) nên 2 nghiệm cùng âm
Cho hpt \(\left\{{}\begin{matrix}mx-2y=2m-1\\2x-my=9-3m\end{matrix}\right.\)
a) Tìm m để hpt có nghiệm duy nhất (x,y) và tìm nghiệm (x,y) đó
b) Với (x,y) là nghiệm duy nhất
1. Tìm đẳng thức liên hệ giữa x,y không phụ thuộc vào m
2. Tìm m để \(x^2+y^2\) đạt GTNN
3. Tìm m để \(xy\) đạt GTLN
a:
Để hệ có nghiệm duy nhất thì m/2<>-2/-m
=>m^2<>4
=>m<>2 và m<>-2