Những câu hỏi liên quan
Vô Danh Tiểu Tốt
Xem chi tiết
lili
19 tháng 3 2020 lúc 22:17

đề bài sai rồi bạn nhé check lại đi 

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
20 tháng 3 2020 lúc 6:01

Sửa đề: \(\frac{a}{b}+\frac{a}{c}+\frac{c}{b}+\frac{c}{a}+\frac{b}{c}+\frac{b}{a}\ge\sqrt{2}\left(\Sigma\sqrt{\frac{1-a}{a}}\right)\)

or \(\Sigma\frac{b+c}{a}\ge\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}\)

Theo AM-GM:\(\frac{b+c}{a}\ge2\sqrt{\frac{2\left(b+c\right)}{a}}-2\)

Tương tự và cộng lại: \(VT\ge2\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}-6\)

Mà: \(\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}\ge3\sqrt[6]{\frac{8\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge6\)

Từ đó: \(VT\ge2\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}-\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}=VP\)

Done!

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
23 tháng 3 2020 lúc 16:18

Vào ghé thăm nhà mình nhé: See method from solution! Cảm ơn bạn.

Bình luận (0)
 Khách vãng lai đã xóa
vũ thị ánh dương
Xem chi tiết
Nguyễn Linh Chi
21 tháng 10 2019 lúc 14:12

Ta có:

\(\frac{2}{\sqrt{a}}+\frac{2}{\sqrt{b}}+\frac{2}{\sqrt{c}}=\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)+\left(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)+\left(\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}\right)\)

\(\ge\frac{\left(1+1\right)^2}{\sqrt{a}+\sqrt{b}}+\frac{\left(1+1\right)^2}{\sqrt{b}+\sqrt{c}}+\frac{\left(1+1\right)^2}{\sqrt{c}+\sqrt{a}}\)

\(=\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{4}{\sqrt{b}+\sqrt{c}}+\frac{4}{\sqrt{c}+\sqrt{a}}\)

=> \(2\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\)\(\ge4\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}+\frac{1}{\sqrt{c}+\sqrt{a}}\right)\)

=> \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)\(\ge2\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}+\frac{1}{\sqrt{c}+\sqrt{a}}\right)\)

"=" xảy ra <=> a =b =c.

Bình luận (0)
 Khách vãng lai đã xóa
Đinh Thị Ngọc Anh
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Lầy Văn Lội
4 tháng 8 2017 lúc 21:02

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

cauchy-schwarz: 

\(VT=\frac{c^2}{ac^2+bc^2}+\frac{a^2}{a^2b+a^2c}+\frac{b^2}{b^2c+b^2a}+\frac{\sqrt[3]{a^2b^2c^2}}{2abc}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) 

Bình luận (0)
Nguyễn Đức Anh
Xem chi tiết
Akai Haruma
17 tháng 11 2019 lúc 15:35

Lời giải:

Sửa đề: \(\frac{1}{(a+b+\sqrt{2(a+c)})^3}+\frac{1}{(b+c+\sqrt{2(b+a)})^3}+\frac{1}{(c+a+\sqrt{2(b+c)})^3}\leq \frac{8}{9}\)

--------------------------

Áp dụng BĐT AM-GM:

\(a+b+\sqrt{2(a+c)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\geq 3\sqrt[3]{\frac{(a+b)(a+c)}{2}}\)

\(\Rightarrow [a+b+\sqrt{2(a+c)}]^3\geq \frac{27}{2}(a+b)(a+c)\)

\(\Rightarrow \frac{1}{(a+b+\sqrt{2(a+c)})^3}\leq \frac{2}{27(a+b)(a+c)}\)

Hoàn toàn tương tự với các phân thức còn lại:

\(\Rightarrow \text{VT}\leq \frac{4(a+b+c)}{27(a+b)(b+c)(c+a)}(1)\)

Lại theo BĐT AM-GM:

\((a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ac)-abc\geq (a+b+c)(ab+bc+ac)-\frac{(a+b+c)(ab+bc+ac)}{9}=\frac{8}{9}(a+b+c)(ab+bc+ac)(2)\)

Và:

\(16(a+b+c)\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}\geq \frac{3(a+b+c)}{ab+bc+ac}\)

\(\Rightarrow ab+bc+ac\geq \frac{3}{16}(3)\)

Từ \((1);(2);(3)\Rightarrow \text{VT}\leq \frac{1}{6(ab+bc+ac)}\leq \frac{1}{6.\frac{3}{16}}=\frac{8}{9}\) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Phan Nghĩa
5 tháng 7 2020 lúc 14:03

Áp dụng bđt Cauchy cho 2 số không âm :

\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)

\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)

Cộng vế với vế ta được :

\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)

Vậy ta có điều phải chứng mình 

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
5 tháng 7 2020 lúc 15:47

Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *

Khi đó:

\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)

Tương tự:

\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)

\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
5 tháng 7 2020 lúc 16:12

Trời ạ cay vãi shit đánh máy xong rồi tự nhiên bấm hủy T.T bài 1 ngắn đã đành ......

\(WLOG:a\ge b\ge c\)

Ta dễ có:\(\frac{a}{b+c+1}+\frac{b}{c+a+1}+\frac{c}{a+b+1}\)

\(\le\frac{a}{b+c+1}+\frac{b}{b+c+1}+\frac{c}{b+c+1}\)

\(=\frac{a+b+c}{b+c+1}\)

Ta cần chứng minh:

\(\frac{a+b+c}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)

\(\Leftrightarrow a+b+c+\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(b+c+1\right)\le1+b+c\)

\(\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1+b+c\right)\le1-a\) ( 1 )

Mà theo AM - GM :

\(\left(1-b\right)\left(1-c\right)\left(1+b+c\right)\le\left(\frac{1-b+1-c+1+b+c}{3}\right)^3=1\)

Khi đó ( 1 ) đúng

Vậy ta có đpcm

Nếu bài toán trở thành

\(\frac{a}{bc+2}+\frac{b}{ca+2}+\frac{c}{ab+2}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\) thì bài toán khó định hướng hơn rất nhiều :D

Bình luận (0)
 Khách vãng lai đã xóa
Tiến Nguyễn Minh
Xem chi tiết
Vũ Tiến Manh
21 tháng 10 2019 lúc 22:19

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
HD Film
21 tháng 10 2019 lúc 22:26

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
HD Film
21 tháng 10 2019 lúc 22:35

4c, 

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}=a+b+c-\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}+3--\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}\)\(\ge6-2\cdot\frac{\left(a+b+c\right)}{2}=3\)

Bình luận (0)
 Khách vãng lai đã xóa
Linh Châu
Xem chi tiết
tthnew
1 tháng 7 2020 lúc 19:55

1) Áp dụng BĐT AM-GM: \(VT\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9=VP\)

Đẳng thức xảy ra khi $a=b=c.$

2) Từ (1) suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{3^2}{a+b+c}+\frac{1^2}{d}\ge\frac{\left(3+1\right)^2}{a+b+c+d}=VP\)

Đẳng thức..

3) Ta có \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\) với $a,b,c>0.$

Cho $c=1$ ta nhận được bất đẳng thức cần chứng minh.

4) Đặt \(a=x^2,b=y^2,S=x+y,P=xy\left(S^2\ge4P\right)\) thì cần chứng minh $$(x+y)^8 \geqq 64x^2 y^2 (x^2+y^2)^2$$

Hay là \(S^8\ge64P^2\left(S^2-2P\right)^2\)

Tương đương với $$(-4 P + S^2)^2 ( 8 P S^2 + S^4-16 P^2 ) \geqq 0$$

Đây là điều hiển nhiên.

5) \(3a^3+\frac{7}{2}b^3+\frac{7}{2}b^3\ge3\sqrt[3]{3a^3.\left(\frac{7}{2}b^3\right)^2}=3\sqrt[3]{\frac{147}{4}}ab^2>9ab^2=VP\)

6) \(VT=\sqrt[4]{\left(\sqrt{a}+\sqrt{b}\right)^8}\ge\sqrt[4]{64ab\left(a+b\right)^2}=2\sqrt{2\left(a+b\right)\sqrt{ab}}=VP\)

Có thế thôi mà nhỉ:v

Bình luận (0)
Kiệt Nguyễn
Xem chi tiết
Hồ Bích Ngọc
13 tháng 12 2020 lúc 19:27

hello nha

Bình luận (0)
 Khách vãng lai đã xóa
Hồ Bích Ngọc
13 tháng 12 2020 lúc 19:32

2k? vậy ạ

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Minh Đăng
28 tháng 12 2020 lúc 21:26

Áp dụng BĐT Bunyakovsky dạng cộng mẫu:

\(\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{b}}+\frac{\left(\sqrt{b}-1\right)^2}{\sqrt{c}}\ge\frac{\left(\sqrt{a}+\sqrt{b}-2\right)^2}{\sqrt{b}+\sqrt{c}}\)

\(=\frac{\left(-\sqrt{c}\right)^2}{\sqrt{b}+\sqrt{c}}=\frac{c}{\sqrt{b}+\sqrt{c}}\)

Tương tự CM được: \(4\left[\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{b}}+\frac{\left(\sqrt{b}-1\right)^2}{\sqrt{c}}+\frac{\left(\sqrt{c}-1\right)^2}{\sqrt{a}}\right]\ge2\left(\frac{a}{\sqrt{c}+\sqrt{a}}+\frac{b}{\sqrt{a}+\sqrt{b}}+\frac{c}{\sqrt{b}+\sqrt{c}}\right)\) (1)

Lại có: \(VP\left(1\right)-\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}+\frac{b+c}{\sqrt{b}+\sqrt{c}}+\frac{c+a}{\sqrt{c}+\sqrt{a}}\right)=...=0\) (biến đổi đồng nhất)

=> \(VT\left(1\right)\ge\frac{a+b}{\sqrt{a}+\sqrt{b}}+\frac{b+c}{\sqrt{b}+\sqrt{c}}+\frac{c+a}{\sqrt{c}+\sqrt{a}}\)

Dấu "=" xảy ra khi: \(a=b=c=\frac{4}{9}\)

Bình luận (0)
 Khách vãng lai đã xóa