Những câu hỏi liên quan
Nguyễn Thị Thanh Trang
Xem chi tiết
Nguyễn Thị Thanh Trang
Xem chi tiết
Trần Thanh Phương
16 tháng 8 2019 lúc 11:29

Tham khảo tại đây: Câu hỏi của dbrby - Toán lớp 10 | Học trực tuyến

Bình luận (0)
Uchiha Itachi
Xem chi tiết
saadaa
Xem chi tiết
Mr Lazy
30 tháng 7 2016 lúc 23:26

Đề gốc là \(P=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)

\(\frac{P}{4}=\frac{x}{2.2\sqrt{y}}+\frac{y}{2.2\sqrt{z}}+\frac{z}{2.2\sqrt{x}}\)

Áp dụng BĐT Côsi:

\(2.2.\sqrt{x}\le x+2^2=x+4\)

\(\Rightarrow\frac{P}{4}\ge\frac{x}{y+4}+\frac{y}{z+4}+\frac{z}{x+4}=\frac{x^2}{xy+4x}+\frac{y^2}{yz+4y}+\frac{z^2}{zx+4z}\)

\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx+4\left(x+y+z\right)}\ge\frac{\left(x+y+z\right)^2}{\frac{1}{3}\left(x+y+z\right)^2+4\left(x+y+z\right)}=\frac{3\left(x+y+z\right)}{\left(x+y+z\right)+12}\)

\(=3-\frac{36}{x+y+z+12}\ge3-\frac{36}{12+12}=\frac{3}{2}\)

\(\Rightarrow P\ge6\)

Dấu bằng xảy ra khi \(x=y=z=4\)

Bình luận (0)
Nguyễn Thị Thanh Trang
Xem chi tiết
tth_new
18 tháng 8 2019 lúc 8:13

a) Từ đề bài có: \(x\left(x-1\right)\le0\Rightarrow x^2\le x\)

Tương tự hai BĐT còn lại và cộng theo vế suy ra:

\(M=x+y+z-3\ge x^2+y^2+z^2-3=-2\)

Đẳng thức xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó

Is it true?

Bình luận (0)
Phùng Minh Quân
18 tháng 8 2019 lúc 9:07

\(4\le\sqrt{x}+\sqrt{y}+\sqrt{xy}+1\le\sqrt{2\left(x+y\right)}+\frac{x+y}{2}+1\)

\(\Leftrightarrow\)\(8\le x+y+2\sqrt{x+y}\sqrt{2}+2=\left(\sqrt{x+y}+\sqrt{2}\right)^2\)

\(\Leftrightarrow\)\(\sqrt{x+y}+\sqrt{2}\ge\sqrt{8}\)

\(\Leftrightarrow\)\(x+y\ge\left(\sqrt{8}-\sqrt{2}\right)^2=2\)

\(\Rightarrow\)\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Dấu "=" xảy ra khi \(x=y=1\)

Bình luận (0)
nguyễn quốc hoàn
Xem chi tiết
kudo shinichi
2 tháng 3 2019 lúc 16:48

B tự c/m BĐT \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)nhé.

Dấu " = " xảy ra \(\Leftrightarrow x=y=z\)

Áp dụng :

\(x^4+y^4+z^4\ge\frac{1}{3}.\left(x^2+y^2+z^2\right)^2\ge\frac{1}{3}.\left[\frac{1}{3}.\left(x+y+z\right)^2\right]^2=\frac{1}{27}.\left(x+y+z\right)^4=\frac{1}{27}.2^4=\frac{16}{27}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)

KL:...

 
Bình luận (0)
Đinh Quốc Tuấn
2 tháng 3 2019 lúc 11:48

vận dụng bất đẳng thức x^2+y^2+z^2 \(\ge\) (x+y+z)^2/3

Bình luận (0)
kudo shinichi
2 tháng 3 2019 lúc 16:44

Áp dụng BĐT AM-GM ta có:

\(x^4+\frac{16}{81}+\frac{16}{81}+\frac{16}{81}\ge4.\sqrt[4]{x^4.\frac{16}{81}.\frac{16}{81}.\frac{16}{81}}=\frac{32}{27}x\)

Dấu " = " xảy  ra \(\Leftrightarrow x^4=\frac{16}{81}\Leftrightarrow x=\frac{2}{3}\)

Tương tự:

\(y^4+\frac{16}{81}+\frac{16}{81}+\frac{16}{81}\ge4.\sqrt[4]{y^4.\frac{16}{81}.\frac{16}{81}.\frac{16}{81}}=\frac{32}{27}y\)

\(z^4+\frac{16}{81}+\frac{16}{81}+\frac{16}{81}\ge4.\sqrt[4]{z^4.\frac{16}{81}.\frac{16}{81}.\frac{16}{81}}=\frac{32}{27}z\)

Dấu " = " xảy  ra \(\Leftrightarrow y^4=\frac{16}{81}\Leftrightarrow y=\frac{2}{3}\)

                              \(z^4=\frac{16}{81}\Leftrightarrow z=\frac{2}{3}\)

Cộng vế với vế của 3 BĐT trên ta có:

\(x^4+y^4+z^4+\frac{16}{81}.9\ge\frac{32}{27}\left(x+y+z\right)\)

\(\Leftrightarrow x^4+y^4+z^4\ge\frac{16}{27}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)

Vậy Min \(x^4+y^4+z^4=\frac{16}{27}\)\(\Leftrightarrow x=y=z=\frac{2}{3}\)

 
Bình luận (0)
nguyễn quốc hoàn
Xem chi tiết
Nguyen Phuc Duy
Xem chi tiết
ღ๖ۣۜLinh
14 tháng 2 2020 lúc 18:19

Áp dụng bđt AM-GM ta có

\(\sqrt{3x\left(2x+y\right)}+\sqrt{3y\left(2y+x\right)}\le\frac{3x+2x+y}{2}+\frac{3y+2y+x}{2}=\frac{6\left(x+y\right)}{2}=3\left(x+y\right)\)

\(\Rightarrow P\ge\frac{x+y}{3\left(x+y\right)}=\frac{1}{3}\)

Dấu "=" xảy ra khi x=y

Bình luận (0)
 Khách vãng lai đã xóa
Bùi Chí Phương Nam
Xem chi tiết
Hoàng Phúc
12 tháng 8 2016 lúc 10:52

a, Từ x+y=1

=>x=1-y

Ta có: \(x^3+y^3=\left(1-y\right)^3+y^3=1-3y+3y^2-y^3+y^3\)


\(=3y^2-3y+1=3\left(y^2-y+\frac{1}{3}\right)=3\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)\)

\(=3\left[\left(y-\frac{1}{2}\right)^2+\frac{1}{12}\right]=3\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\) với mọi y

=>GTNN của x3+y3 là 1/4

Dấu "=" xảy ra \(< =>\left(y-\frac{1}{2}\right)^2=0< =>y=\frac{1}{2}< =>x=y=\frac{1}{2}\) (vì x=1-y)

Vậy .......................................

b) Ta có: \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}\)

\(=\left(\frac{x^2}{y+z}+x\right)+\left(\frac{y^2}{z+x}+y\right)+\left(\frac{z^2}{y+z}+z\right)-\left(x+y+z\right)\)

\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+z}-\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\)

Đặt \(A=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}\)

\(A=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{z+x}+1\right)+\left(\frac{z}{y+x}+1\right)-3\)

\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{y+x}-3\)

\(=\left(x+y+z\right)\left(\frac{1}{y+x}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\)

\(=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\ge\frac{9}{2}-3=\frac{3}{2}\)

(phần này nhân phá ngoặc rồi dùng biến đổi tương đương)

\(=>P=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\ge2\left(\frac{3}{2}-1\right)=1\)

=>minP=1

Dấu "=" xảy ra <=>x=y=z

Vậy.....................

Bình luận (0)