Chứng minh với mọi \(x\in Z\) thì \(P\left(x\right)=1985.\frac{x^3}{3}+1979.\frac{x^2}{2}+5.\frac{x}{6}\in Z\)
Bài 1: Tìm x, y, z biết:
a. \(8x=3y\); \(5y=6z\) và \(2x+y-z=-34\)
b. \(6^{x+1}-200\cdot6^{x-1}=360\) \(\left(x\in N,x\ge2\right)\)
c. \(3^x+4^x=5^x\left(x\in N\right)\)
d. \(\frac{x-5}{7}=\frac{2y+3}{5}=z+19\) và \(x+y=z\)
e. \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và \(x^6\cdot y^6=64\)
g. \(\left(x^3-5\right)\left(x^3-10\right)\left(x^3-30\right)< 0\left(x\in Z\right)\)
Bài 2:
a. Chứng minh rằng: \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2011^2}>\frac{1}{2011}\)
b. Cho \(\left(5a_1+7b_1\right)^{2010}+\left(5a_2+7b_2\right)^{2012}+\left(5a_3+7b_3\right)^{2014}\le0\) và \(b_1,b_2,b_3\ne0,b_1+b_2+b_3\ne0\) . Chứng minh rằng: \(\frac{a_1+a_2+a_3}{b_1+b_2+b_3}=-1\frac{2}{5}\)
Bài 3:
a. Cho \(\frac{x}{y}=\frac{z}{t}\) . Chứng minh rằng \(\frac{x^2-y^2}{z^2-t^2}=\left(\frac{y-x}{t-z}\right)^2=\frac{xy}{zt}\)
b. Độ dài 3 đường cao của 1 tam giác tỉ lệ với 3; 5; 6. Tính độ dài 3 cạnh tương ứng của tam giác đó, biết rằng chu vi của tam giác là 42cm
c. Chứng minh rằng \(2^{x+4}-3^x-3^{x+2}-2^x\) chia hết cho 30 với x la số tựu nhiên lớn hơn hoặc bằng 1
a) Chứng minh với mọi số thực a,b,c a cs \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
b) Cho 3 số dương x,y,z thỏa mãn điều kiện x+y+z=3/4. Chứng minh:
\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge9\)
Đẳng thức xảy ra khi nào?
\(ab+bc+ca\le a^2+b^2+c^2\le\frac{\left(a+b+c\right)^2}{3}\) ( bđt phụ + Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
CM bđt phụ : \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow\)\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)
Chúc bạn học tốt ~
Chứng minh với mọi x, y khác 0 thì giá trị của biểu thức \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(z+\frac{1}{z}\right)\)
không phụ thuộc vào giấ trị của biến
Chứng minh với mọi x,y,z dương :
\(\frac{y+z}{x+\sqrt[3]{4\left(y^3+z^3\right)}}+\frac{z+x}{y+\sqrt[3]{4\left(z^3+x^3\right)}}+\frac{x+y}{z+\sqrt[3]{4\left(x^3+y^3\right)}}\le2\)
Xét \(4\left(x^3+y^3\right)-\left(x+y\right)^3=3\left(x+y\right)\left(x-y\right)^2\ge0\) (Vì x,y > 0)
Suy ra \(z+\sqrt[3]{4\left(x^3+y^3\right)}\ge x+y+z\)
Hay \(\frac{x+y}{z+\sqrt[3]{4\left(x^3+y^3\right)}}\le\frac{x+y}{x+y+z}\)
Tương tự : \(\frac{y+z}{x+\sqrt[3]{4\left(y^3+z^3\right)}}\le\frac{y+z}{x+y+z}\)
\(\frac{z+x}{y+\sqrt[3]{4\left(z^3+x^3\right)}}\le\frac{z+x}{x+y+z}\)
Cộng theo vế được đpcm.
Giai phương trình : \(\sqrt{3}cos\left(x+\frac{\Pi}{2}\right)+sin\left(x-\frac{\Pi}{2}\right)=2sin2x\) .
A . \(\left[{}\begin{matrix}x=\frac{5\Pi}{6}+k2\Pi\\x=\frac{\Pi}{18}+k\frac{2\Pi}{3}\end{matrix}\right.,k\in Z}\)
B . \(\left[{}\begin{matrix}x=\frac{7\Pi}{6}+k2\Pi\\x=-\frac{\Pi}{18}+k\frac{2\Pi}{3}\end{matrix}\right.,k\in Z}\)
C . \(\left[{}\begin{matrix}x=\frac{5\Pi}{6}+k2\Pi\\x=\frac{7\Pi}{6}+k2\Pi\end{matrix}\right.,k\in Z}\)
D . \(\left[{}\begin{matrix}x=\frac{\Pi}{18}+k\frac{2\Pi}{3}\\x=-\frac{\Pi}{18}+k\frac{2\Pi}{3}\end{matrix}\right.,k\in Z}\)
Trình bày bài giải chi tiết rồi ms chọn đáp án nha các bạn .
HELP ME !!!!!
Chứng minh rằng với mọi số thực dương thỏa mãn xyz=1
Chứng minh rằng \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+x\right)\left(1+z\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{3}{4}\)
Em thử ạ!Em không chắc đâu.Hơi quá sức em rồi
Ta có: \(VT=\Sigma\frac{x^3}{z+y+yz+1}=\Sigma\frac{x^3}{z+y+\frac{1}{x}+1}\)
\(=\Sigma\frac{x^4}{xz+xy+1+x}=\frac{x^4}{xy+xz+x+1}+\frac{y^4}{yz+xy+y+1}+\frac{z^4}{zx+yz+z+1}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel,suy ra:
\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)+2\left(xy+yz+zx\right)+3}\)
\(\ge\frac{\left(\frac{1}{3}\left(x+y+z\right)^2\right)^2}{\left(x+y+z\right)+\frac{2}{3}\left(x+y+z\right)^2+3}\) (áp dụng BĐT \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3};ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))
Đặt \(t=x+y+z\ge3\sqrt{xyz}=3\) Dấu "=" xảy ra khi x = y = z
Ta cần chứng minh: \(\frac{\frac{t^4}{9}}{\frac{2}{3}t^2+t+3}\ge\frac{3}{4}\Leftrightarrow\frac{t^4}{9\left(\frac{2}{3}t^2+t+3\right)}=\frac{t^4}{6t^2+9t+27}\ge\frac{3}{4}\)(\(t\ge3\))
Thật vậy,BĐT tương đương với: \(4t^4\ge18t^2+27t+81\)
\(\Leftrightarrow3t^4-18t^2-27t+t^4-81\ge0\)
Ta có: \(VT\ge3t^4-18t^2-27t+3^4-81\)
\(=3t^4-18t^2-27t\).Cần chứng minh\(3t^4-18t^2-27t\ge0\Leftrightarrow3t^4\ge18t^2+27t\)
Thật vậy,chia hai vế cho \(t\ge3\),ta cần chứng minh \(3t^3\ge18t+27\Leftrightarrow3t^3-18t-27\ge0\)
\(\Leftrightarrow3\left(t^3-27\right)-18\left(t-3\right)\ge0\)
\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+27\right)-18\left(t-3\right)\ge0\)
\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+9\right)\ge0\)
BĐT hiển nhiên đúng,do \(t\ge3\) và \(3t^2+9t+9=3\left(t+\frac{3}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}>0\)
Dấu "=" xảy ra khi t = 3 tức là \(\hept{\begin{cases}x=y=z\\xyz=1\end{cases}}\Leftrightarrow x=y=z=1\)
Chứng minh hoàn tất
Em sửa chút cho bài làm ngắn gọn hơn.
Khúc chứng minh: \(4t^4\ge18t^2+27t+81\)
\(\Leftrightarrow4t^4-18t^2-27t-81\ge0\)
\(\Leftrightarrow\left(t-3\right)\left(4t^3+12t^2+18t+27\right)\ge0\)
BĐT hiển nhiên đúng do \(t\ge3\Rightarrow\hept{\begin{cases}t-3\ge0\\4t^3+12t^2+18t+27>0\end{cases}}\)
Còn khúc sau y chang :P Lúc làm rối quá nên không nghĩ ra ạ!
Áp dụng BĐT cosi ta có
\(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+z}{8}+\frac{1+y}{8}\ge\frac{3}{4}x\)
\(\frac{y^3}{\left(1+x\right)\left(1+z\right)}+\frac{1+x}{8}+\frac{1+z}{8}\ge\frac{3}{4}y\)
\(\frac{z^3}{\left(1+y\right)\left(1+x\right)}+\frac{1+y}{8}+\frac{1+x}{8}\ge\frac{3}{4}z\)
Khi đó
\(VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{1}{4}\left(x+y+z\right)-\frac{3}{4}=\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\)
Mà \(x+y+z\ge3\sqrt[3]{xyz}=3\)
=> \(VT\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)(ĐPCM)
Dấu bằng xảy ra khi x=y=z=1
Chứng minh rằng nếu: \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\) ) thì \(\frac{x-y}{4}=\frac{y-z}{5}\)
+1GP cho cách chứng minh bằng $\text{C-S}$ hoặc $\text{AM-GM}$ - Hãy thử ngay$!?$
Bài toán. Cho $x,y,z>0.$ Chứng minh: $$\frac{1}{2}+\frac{1}{2}{r}^{2}+\frac{1}{3}\,{p}^{2}+\frac{2}{3}\,{q}^{2}-\frac{1}{6} Q-\frac{3}{2} r-\frac{2}{3}q-\frac{1}{6}pq-\frac{5}{3} \,pr\geqslant 0$$
với $$\Big[p=x+y+z,q=xy+zx+yz,r=xyz,Q= \left( x-y \right) \left( y-z \right)
\left( z-x \right)\Big ]$$ (Xuất xứ: Sáng tác.)
Một cách chứng minh bằng SOS:
$$\text{VT} = \frac{1}{12}\,\sum \left( 3\,{z}^{2}+1 \right) \left( x-y \right) ^{2}+\frac{1}{6} \sum\,y
\left( y+z \right) \left( x-1 \right) ^{2}+\frac{1}{2}\, \left( xyz-1
\right) ^{2} \geqslant 0$$
Ngoài ra$,$ có cách chứng minh bằng Cauchy Schwarz:D Ai có thể tìm thấy nó$?$
Mới xem trên VMF về :))
Viết lại bất đẳng thức như sau:
\((x^2+1)(y^2+1)(z^2+1) \geqslant \frac{1}{6} \sum (x+yz+zx)^2 +\frac{1}{2} (x^2+y^2+z^2) +\frac{(xyz+1)^2}{2}\,\,\,(1)\)
Ta có:
\(\text{VT} = x^2 y^2 z^2 + \frac{1}{2} \sum (x^2+y^2 z^2 +z^2 x^2) +\frac{1}{2}(x^2+y^2+z^2) +1\)
\(\geqslant \frac{1}{6} \sum (x+yz+zx)^2 +\frac{1}{2} \Big[(x^2+y^2+z^2) +x^2 y^2 z^2 +(x^2 y^2 z^2 +1) +1\Big]\)
\(\geqslant \frac{1}{6} \sum (x+yz+zx)^2 +\frac{1}{2} (x^2+y^2+z^2) +\frac{(xyz+1)^2}{2}=\text{VP}\)
Tìm \(x;y;z\in Q\) biết:
a)\(\left|x+\frac{3}{7}\right|+\left|y-\frac{4}{9}\right|+\left|z+\frac{5}{11}\right|=0\)
b)\(\left|x-\frac{2}{5}\right|+\left|x+y-\frac{1}{2}\right|+\left|y-z+\frac{3}{5}\right|=0\)
c)\(\left|x+y-2,8\right|+\left|y+z+4\right|+\left|z+x-1,4\right|=0\)
Giúp mk vs.Ai làm được câu nào thì làm!
hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi
Lí luận chung cho cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)
b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)
c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)
\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)
\(\Rightarrow2\left(x+y+z\right)=0,2\)
\(\Rightarrow x+y+z=0,1\)
Từ đây tìm đc x, y, z
Câu a,b,c tương tự nhau cả
Vì mỗi tuyệt đối lớn hơn hoặc bằng 0 0 nên 3 tuyệt đối cộng lại với nhau =0
Khi và chỉ khi mỗi tuyệt đối =0