Cho ΔABC với A(1,1),B(1;4),C(5;1):
1.Lập PTTQ đg thẳng chứa cạnh AC và đg cao BH của ΔABC
2.Lập PT đg tròn ngoại tiếp ΔABC
trong mặt phẳng với hệ tọa độ Oxy , cho ΔABC có đường tròn nội tiếp tiếp xúc với 3 cạnh BC,CA,AB lần lượt tại M,N,P .Gọi D là trung điểm cạnh BC .Biết M(-1,1) ,pt NP: x+y-4=0 và pt AD : 14x-13y+7=0 .Tìm tọa độ A
trong mặt phẳng với hệ tọa độ Oxy , cho ΔABC có đường tròn nội tiếp tiếp xúc với 3 cạnh BC,CA,AB lần lượt tại M,N,P .Gọi D là trung điểm cạnh BC .Biết M(-1,1) ,pt NP: x+y-4=0 và pt AD : 14x-13y+7=0 .Tìm tọa độ A
Cho ΔABC có các đường cao xuất phát từ đỉnh A,B,C có độ dài lần lượt tỉ lệ với 12,15,20
a)Hỏi các cạnh của ΔABC tỉ lệ với số nào ???
b)ΔABC là tam giác gì ?? Vì sao ?
Bài 1:cho ΔABC Vuông ở C ,có góc B=60 độ , tia phân giác của góc BAC cắt BC ở E,kẻ vuông góc với AB .(K thuộc AB ) ,kẻ BD vuông góc với AE (D thuộc AE)
Chứng minh rằng :a)AK=KB b)AD =BC
bài 2 :cho ΔABC cân tại A và hai đường trung tuyến BM,CN cắt nhau tại K
a)chứng minh ΔBNC=ΔCMB
b)chứng minh ΔBKC cân tại K
c)chứng minh BC < 4.KM
bài 3 :cho ΔABC vuông tại A có BD là phân giác ,Kẻ DE vuông góc BC (E thuộc BC).Gọi F là giao điểm của AB và DE
Chứng minh rằng:
a)BD là trung trực của AE (BD vuông góc với AE)
b)DF=DC
c)AD<DC
d)AE // FC
*Làm và vẽ hình hộ mình với các bạn ơi.Mình đang rất vội (CẢM ƠN CÁC BẠN RẤT NHIỀU)*
1) cho ΔABC đều có cạnh =3m
a) tính diện tích ΔABC
b) lấy M nằm trong tam giác ABC. vẽ MI, MJ, MK lần lượt vuông góc với AB,AC,BC. hãy tính MI+MJ+MK
2) cho ΔABC. hạ AD vuông góc với đường phân giác trong của góc B tại D, hạ AE vuông góc với đường phân giác ngoài của goác B tại E.
a) c/m tứ giác ADBE là hình chữ nhật.
b) tìm điều kiện của ΔABC để tứ giác ADBE là hình vuông.
c) c/m DE//BC
a. hạ đương cao AK
suy ra BK=KC=3:2=1.5(cm)
Xét tam giac ABC có góc AKB=90
AK^2+BK^2=AB^2(đl py-ta-go)
AK=\(\dfrac{3\sqrt{3}}{2}\)
SABC=\(\dfrac{1}{2}.\dfrac{3\sqrt{3}}{2}.3=\dfrac{9\sqrt{3}}{4}\)
Cho ΔABC. Đường thẳng kẻ qua đỉnh B song song với AC. Đường thẳng kẻ qua đỉnh C song song với AB cắt nhau tại D và cắt đường thẳng kẻ qua đỉnh A song song với BC theo thứ tự ở E và F.
a) CM ΔABC = ΔBAE
b) Tính chu vi ΔDEF biết chu vi ΔABC =15cm
a, vì BD song song với AC nên góc B2 bằng góc C2. tương tự được góc C1 bằng góc B1.Do đó tam giác ABC = tam giác BAE(g.c.g) (dpcm)
b, vì AC song song với BD nên góc D bằng góc ACF.
vì AF song song với BC nên góc C1= góc CAF = B2.
theo câu a, tam giác ABC= tam giác DCB nên AC=BD, AB=DC
Do đó tam giác BDC=tam giác ACF(g.c.g) nên DC = CF=AB nên DF= DC+CF=2.AB.
Tương tự ta đc; DE=2.AC, EF=2.BC
Do đó Chu vi tam giác DEF bằng 2 lần chu vi tam giác ABC và bằng 30 cm
a, vì BD song song với AC nên góc B2 bằng góc C2. tương tự được góc C1 bằng góc B1.Do đó tam giác ABC = tam giác BAE(g.c.g) (dpcm)
b, vì AC song song với BD nên góc D bằng góc ACF.
vì AF song song với BC nên góc C1= góc CAF = B2.
theo câu a, tam giác ABC= tam giác DCB nên AC=BD, AB=DC
Do đó tam giác BDC=tam giác ACF(g.c.g) nên DC = CF=AB nên DF= DC+CF=2.AB.
Tương tự ta đc; DE=2.AC, EF=2.BC
Do đó Chu vi tam giác DEF bằng 2 lần chu vi tam giác ABC và bằng 30 cm
Bài 15. Cho ΔABC biết ^B>^C vẽ AH vuông góc với BC tại H. Lấy D nằm giữa A và H. So sánh: a) AB và AC b) HB và HC c) ^DBC và ^DCB Bài 16. Cho ΔABC, AM là đường trung tuyến của ΔABC. Trên tia đối của tia MA, lấy D sao cho MD=MA. Chứng minh: a) ΔAMB = ΔDMC b) AB // CD c) AB + AC > 2AM.
Xét tam giác ABC có góc B > góc C suy ra AC > AB
Xét tam giác vuông ABH và tam giác vuông ACH
chung AH
có AC > AB (CMT)
suy ra HC > HB
c) Vì HC > HB (CMT)
Xét tam giác vuông BHD và tam giác vuông CHD
Có chung DH , BC >HB nên DC >DB
Xét tam giác BDC có DC > DB nên góc DBC > góc DCB
Bài 16:
Xét tam giác ABM và tam giác DCM
có AM=DM (GT)
góc AMB=góc DMC (đối đỉnh)
BM=MC (GT)
suy ra tam giác ABM=tam giác DCM (c.g.c) (1)
b) Từ (1) suy ra góc MAB = góc MDC (hai góc tuơng ứng)
mà góc MAB so le trong góc MDC
suy ra AB // CD
c) Từ (1) suy ra AB = CD
Xét tam giác ACD có AC + CD > AD
mà AD=2AM, AB=CD (CMT)
suy ra AC +AB >2AM
Cho ΔABC có số đo các góc A, B, C lần lượt tỉ lệ với 3; 2; 1
a. Tính số đo các góc của ΔABC
b. Lấy D là trung điểm của AC, kẻ DM ⊥⊥ AC ( M ∈∈ BC ). Chứng minh rằng ∆ABM là tam giác đều
số đo các góc A,B,C lần lượt tỉ lệ với 3; 2; 1
=> A/3 = B/2 = C/1
=> (A+B+C)/(3+2+1) = A/3 = B/2 = C/1
A + B + C = 180
=> 180/6 = 30 = A/3 = B/2 = C/1
=> A = 30.3 = 90
B = 30.2 = 60
C = 30
a)XÉT\(\Delta ABC\)CÓ
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)
gọi các GÓC A,B,C LẦN LƯỢT LÀ a,b,c TỈ LỆ VỚI 3;2;1
\(\Rightarrow a:b:c=3:2:1\)
\(\Rightarrow\frac{a}{3}=\frac{b}{2}=\frac{c}{1}\)và \(a+b+c=180\)
theo tính chất dãy tỉ số bằng nhau có
\(\frac{a}{3}=\frac{b}{2}=\frac{c}{1}=\frac{a+b+c}{3+2+1}=\frac{180}{6}=30\)
do đó \(\frac{a}{3}=30\Rightarrow a=3.30=90\)
\(\frac{b}{2}=30\Rightarrow b=2.30=60\)
\(\frac{c}{1}=30\Rightarrow c=1.30=30\)
vậy \(\widehat{A}=90^0;\widehat{B}=60^o;\widehat{C}=30^o\)
Tam giác ABC có góc A+ góc B+ góc C = 1800
Vì góc A, góc B, góc C tỉ lệ với 3;2;1 nên
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{1}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+2+1}=\frac{180^0}{6}=30^0\)
\(\frac{\widehat{A}}{3}=30^0\Rightarrow\widehat{A}=90^0\)
\(\frac{\widehat{B}}{2}=30^0\Rightarrow\widehat{B}=60^0\)
\(\frac{\widehat{C}}{1}=30^0\Rightarrow\widehat{C}=30^0\)
Tự vẽ hình nhé
Xét tam giác vuông ADM và tam giác vuông CDM
có BM chung
DA=DC (GT)
suy ra tam giác ADM = tam giác CDM (C.G.C)
suy ra MA=MC (hai cạnh tương ứng)
suy ra tam giác AMC cân tại M suy ra góc MAC=góc MCB = 30 độ
suy ra góc CMA = 120 độ
mà góc CMA kề bù góc AMB
suy ra góc AMB = 60 độ
Góc BAM + góc MAC = 90 độ suy ra góc BAM = 60 độ
tam giác BAM có góc B=góc BAM=góc BMA= 60 độ suy ra tam giác BAM đều
a)Cho ΔABC có a=5,b=6,góc ACB=30 độ.Tính cạnh AB
b)Cho ΔABC cân tại A,có cạnh AB=a.Tính số đo các cạnh,các góc còn lại của ΔABC và tính bán kính đường tròn ngoại tiếp ΔABC biết góc A=70 độ
Cho ΔABC vuông tại A, đường cao AH. Biết HB = 4 cm, HC = 1 cm. Vẽ hình. a,Tính AB,AC. b,Tính AH Giúp mk với ạ ❤️
a, \(BC=BH+HC=5\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{CH\cdot BC}=\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b, Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=2\left(cm\right)\)
a: BC=4+1=5(cm)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{5}\left(cm\right)\\AC=\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b: \(AH=\sqrt{HB\cdot HC}=2\left(cm\right)\)