Cho x,y,z > 0 và x + y + z = 4
Cmr: \(x+y\ge xyz\)
Cho x,y,z>0 thỏa mãn x+y+z=4.CMR \(x+y\ge xyz\)
Do x + y + z = 4 suy ra z = 4 - y -x
Ta có x + y >= 4xy -x^2y - yx^2
Cho x, y, z > 0 và xyz=1. CMR :
\(\dfrac{x^2}{1+y}+\dfrac{y^2}{1+z}+\dfrac{z^2}{1+z}\ge\dfrac{3}{2}\)
Đề sai nhé, \(\dfrac{z^2}{x+1}\) mới đúng nha
\(\dfrac{x^2}{y+1}+\dfrac{y^2}{z+1}+\dfrac{z^2}{x+1}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+3}\left(\text{Svácxơ}\right)\)
\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
Ta có: \(x+y+z\ge3\sqrt[3]{xyz}=3\)
\(\Rightarrow x+y+z+3\le2\left(x+y+z\right)\)
cho 3 số x,y,z \(\ge\)0 và x+y+z+\(\sqrt{xyz}\)=4
cmr \(\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-x\right)\left(4-z\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}=8+\sqrt{xyz}\)
Cho x, y, z > 0. Cmr: \(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\ge x+y+z+6\)
Áp dụng liên tiếp bđt AM-GM cho 2 số dương ta có:
A = \(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\)\(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=\left(xy+\frac{y}{x}\right)+\left(yz+\frac{z}{y}\right)+\)\(\left(xz+\frac{x}{z}\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(\ge2\sqrt{xy.\frac{y}{x}}+2\sqrt{yz.\frac{z}{y}}+2\sqrt{xz.\frac{x}{z}}+\)\(+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(A\ge2y+2z+2x+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(=x+y+z+\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)\)
\(A\ge x+y+z+2\sqrt{x.\frac{1}{x}}+2\sqrt{y.\frac{1}{y}}+\)\(2\sqrt{z.\frac{1}{z}}=x+y+z+2.3=x+y+z+6\)(đpcm)
Dấu "=" xảy ra khi x = y = z = 1
Cho x , y , z là các số thực khoảng ( 0 ; 1 ) thỏa mãn xyz = ( 1- x ) ( 1-y ) (1-z ) . CMR :
\(x^2+y^2+z^2\ge\frac{3}{4}\)
Từ giả thiết , ta có :
\(xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\left(1\right)\)
\(\Rightarrow1=\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\)
Áp dụng bất đẳng thức sau : \(abc\le\left(\frac{a+b+c}{3}\right)^3\) ta có :
\(1=\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\le\left(\frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-3}{3}\right)^3\)
\(\Rightarrow3\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-3\)
\(\Rightarrow6\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Rightarrow6xyz\le xy+yz+zx\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra:
\(3-3\left(x+y+z\right)+3\left(xy+yz+zx\right)=6xyz\le xy+yz+zx\)
\(\Rightarrow0\ge3-3\left(x+y+z\right)+2\left(xy+yz+zx\right)\)
Cộng 2 vế của bất đẳng thức trên cho \(\left(x^2+y^2+z^2\right)\)ta được:
\(x^2+y^2+z^2\ge\left(x+y+z\right)^2-3\left(x+y+z+3\right)=\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu '' = '' xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\)
ta có:
xyz=(1-x).(1-y).(1-z) (1)
=>1=(1:x-1).(1:y-1).(1:z-1)
Cho x, y, z > 0. CMR :
\(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{x}{z}+\frac{z}{y}+\frac{y}{x}\ge x+y+z+6\)
Cho x, y, z > 0 thỏa mãn xyz = 1. CMR: x3 + y3 + z3 \(\ge\) x + y + z
\(x^3+1+1\ge3\sqrt[3]{x^3}=3x\); \(y^3+1+1\ge3y\); \(z^3+1+1\ge3z\)
\(\Rightarrow x^3+y^3+z^3+6\ge3\left(x+y+z\right)\ge x+y+z+2.3\sqrt[3]{xyz}=x+y+z+6\)
\(\Rightarrow x^3+y^3+z^3\ge x+y+z\)
Dấu "=" xảy ra khi \(x=y=z=1\)
cho x,y,z>0 và xyz=1. Cmr: \(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\ge\frac{3}{2}\)
Em thử nha, ko chắc đâu;( em thấy nó giống giống lời giải một bài toán nào đó trên tạp chí toán tuổi thơ mà em đã đọc qua lúc trước: chỗ khúc cuối xét \(t_1>t_2\ge3\) ấy ạ. Nên bắt chước lại chỗ đó. tạm thời em chưa nghĩ ra lời nào khác.
Từ đề bài ta có \(1=xyz\le\frac{\left(x+y+z\right)^3}{27}\Rightarrow t=x+y+z\ge3\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{t^2}{t+3}\). Cần chứng minh \(\frac{t^2}{t+3}\ge\frac{3}{2}\left(t\ge3\right)\Leftrightarrow f\left(t\right)=2t^2-3t-9\ge0\) (1)
Xét \(t_1>t_2\ge3\). Khi đó \(f\left(t_1\right)-f\left(t_2\right)=2\left(t_1^2-t_2^2\right)-3\left(t_1-t_2\right)\)
\(=2\left(t_1-t_2\right)\left(t_1+t_2\right)-3\left(t_1-t_2\right)\)
\(=\left(t_1-t_2\right)\left(2t_1+2t_2-3\right)>\left(t_1-t_2\right)\left(2.3+2.3-3\right)=9\left(t_1-t_2\right)>0\) (do \(t_1>t_2\ge3\))
Do đó khi t tăng thì hàm số f(t) tăng, tương tự t giảm thì f(t) giảm với \(t\ge3\). Do đó f(t) đạt giá trị nhỏ nhất khi t = 3.
Khi đó f(t) = 0. Do đó (1) đúng hay ta có đpcm.
A hay là cách này ấy nhỉ? Cách này thì chắc ăn hơn cách kia.(chỗ chứng minh f(t) >=0 với t>=3)
Cần chứng minh \(f\left(t\right)=2t^2-3t-9\ge0\)
\(\Leftrightarrow2t^2-6t+3t-9\ge0\) (Tách -3t thành -6t + 3t)
\(\Leftrightarrow2t\left(t-3\right)+3\left(t-3\right)=\left(2t+3\right)\left(t-3\right)\ge0\) (luôn đúng với mọi \(t\ge3\))
Do đó f(t) \(\ge0\). Hay ta có đpcm.
Cho x,y,z là các số thực dương và xyz(x + y + z) = 1.
CMR: (x + y)(x + z) \(\ge\) 2
(x+y)(x+z) = x(x+y+z) +yz >= 2 ( áp dụng bdt cosi cho2 số dg) . Dấu "=" xảy ra <=> x(x+y+z) =yz ... bạn tự lm tiếp dựa vào đề bài nha.