\(^{2^{30}và3^{20}}\)
So sánh
\(2^{30}+3^{30}+4^{30}và3^{20}+6^{20}+8^{20}\)
Ta có :
230 + 330 + 430= (23)10 + (33)10 + (43)10
= 810 + 2710 + 6410
320 + 620 + 820= ( 32)10 + (62)10 + (82)10
= 910 + 3610 + 6410
Ta thấy: 810 + 2710 + 6410 < 910 + 3610 + 6410
\(\Rightarrow\) 230 + 330 + 430 < 320 + 620 + 820
so sánh \(2^{30}+3^{20}+4^{30}và3\cdot24^{10}\)
so sánh \(2^{30}+3^{20}+4^{30}và3\cdot24^{10}\)
So sánh
a/4020và330 ; b/721và 820 ;c/ (1/3+1/32+1/33+..........+1/399)và 1/2
a/ 40^20=40^2.10=1600^10
3^30=3^3.10=27^10
vì 1600^10>27^10 nên 40^20>3^30
a) 40^20=(4^2)^10=16^10
30^30=(3^3)^10=27610
Vì 16<27=>16^10<27^10 hay 4^20<3^30
b) mk chịu
c) Đặt A= 1/3+1/3^2+1/3^3+...+1/3^99
=>3A=3( 1/3+1/3^2+1/3^3+...+1/3^99)
=>3A=1+1/3+1/3^2+...+1/3^98
=>3A-A=(1+1/3+1/3^2+...+1/3^98)-(1/3+1/3^2+1/3^3+...+1/3^99)
=>2A=1-1/3^99
=>A=(1-1/3^99)/2
=>A=1/2 - (1/3^99)/2 < 1/2=>a<1/2
so sánh
530và350
273và95
1440và1420
215và1216
Bài làm :
\(1\text{)}\hept{\begin{cases}5^{30}=\left(5^3\right)^{10}=125^{10}\\3^{50}=\left(3^5\right)^{10}=243^{10}\end{cases}}\Rightarrow5^{30}< 3^{50}\)
\(2\text{)}\hept{\begin{cases}27^3=\left(3^3\right)^3=3^9\\9^5=\left(3^2\right)^5=3^{10}\end{cases}}\Rightarrow27^3< 9^5\)
\(3\text{)}14^{40}>14^{20}\)
\(4\text{)}\hept{\begin{cases}2< 12\\15< 16\end{cases}}\Rightarrow2^{15}< 12^{16}\)
So sánh:
\(2^{20}và3^{12}\)
Giải chi tiết giúp mik nha.
2²⁰ = (2⁵)⁴ = 32⁴
3¹² = (3³)⁴ = 27⁴
Do 32 > 27 nên 32⁴ > 27⁴
Vậy 2²⁰ > 3¹²
220 = (25)4 = 324
312 = (33)4 = 274
Vì 32 > 27 ⇒ 324 > 274 ⇒ 220 > 312
So sánh
a)\(4^{20}và3^{30}\)
b)\(7^{21}và8^{14}\)
c)\(\left(\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}\right)và\frac{1}{2}\)
a) Ta có : 420 = (42)10 = 1610
330 = (33)10 = 2710
Vì 1610 < 2710 nên 420 < 330
b) Ta có : 721 = (73)7 = 3437
814 = (82)7 = 647
Vì 3437 > 647 nên 721 > 814
Phân số nào dưới đây ko nằm giữa 2/5 và3/5
A.13/30 B. 14/25 C.1/2 D.19/30
so sanh
2225và3150
291và535
9920và999910
Help me
a: \(2^{225}=8^{75}\)
\(3^{150}=9^{75}\)
mà 8<9
nên \(2^{225}< 3^{150}\)
b: \(2^{91}=8192^7\)
\(5^{35}=3125^7\)
mà 8192>3125
nên \(2^{91}>5^{35}\)