Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
My Phạm
Xem chi tiết
Akai Haruma
8 tháng 11 2019 lúc 14:13

Lời giải:

Ta có:

\(3m^2+m=4n^2+n\)

\(\Leftrightarrow 4m^2+m=4n^2+n+m^2\)

\(\Leftrightarrow 4(m^2-n^2)+(m-n)=m^2\)

\(\Leftrightarrow (m-n)(4m+4n+1)=m^2\)

Đặt $d$ là ước chung lớn nhất của $m-n$ và $4m+4n+1$

\(\Rightarrow \left\{\begin{matrix} m-n\vdots d\\ 4m+4n+1\vdots d\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m^2=(m-n)(4m+4n+1)\vdots d^2\\ 4(m-n)+(4m+4n+1)\vdots d\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\vdots d\\ 8m+1\vdots d\end{matrix}\right.\Rightarrow 1\vdots d\Rightarrow d=1\)

Vậy $m-n, 4m+4n+1$ nguyên tố cùng nhau. Mà tích của chúng là 1 số chính phương nên bản thân $m-n, 4m+4n+1$ cũng là các số chính phương (đpcm).

Khách vãng lai đã xóa
Akai Haruma
18 tháng 11 2019 lúc 23:47

Lời giải:

Ta có:

\(3m^2+m=4n^2+n\)

\(\Leftrightarrow 4m^2+m=4n^2+n+m^2\)

\(\Leftrightarrow 4(m^2-n^2)+(m-n)=m^2\)

\(\Leftrightarrow (m-n)(4m+4n+1)=m^2\)

Đặt $d$ là ước chung lớn nhất của $m-n$ và $4m+4n+1$

\(\Rightarrow \left\{\begin{matrix} m-n\vdots d\\ 4m+4n+1\vdots d\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m^2=(m-n)(4m+4n+1)\vdots d^2\\ 4(m-n)+(4m+4n+1)\vdots d\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\vdots d\\ 8m+1\vdots d\end{matrix}\right.\Rightarrow 1\vdots d\Rightarrow d=1\)

Vậy $m-n, 4m+4n+1$ nguyên tố cùng nhau. Mà tích của chúng là 1 số chính phương nên bản thân $m-n, 4m+4n+1$ cũng là các số chính phương (đpcm).

Khách vãng lai đã xóa
Nguyễn Như Anh
Xem chi tiết
THI QUYNH HOA BUI
Xem chi tiết
Trang Nguyen
Xem chi tiết
Lãnh Hạ Thiên Băng
8 tháng 1 2017 lúc 8:30

Ta có: 24n+1 + 34m+1

= 24n.2 + 34m.3

= (24)n.2 + (34)m.3

= (...6)n.2 + (...1)m.3

= (...6).2 + (...1).3

= (...2) + (...3)

= ...5

Vì ...5⋮5 nên 24n+1+34m+1⋮5

Vậy 24n+1+34m+1⋮5 

ST
8 tháng 1 2017 lúc 7:42

Ta có: 24n+1 + 34m+1

= 24n.2 + 34m.3

= (24)n.2 + (34)m.3

(...6)n.2 + (...1)m.3

(...6).2 + (...1).3

(...2) + (...3)

...5

Vì \(\overline{...5}⋮5\) nên \(2^{4n+1}+3^{4m+1}⋮5\)

Vậy \(2^{4n+1}+3^{4m+1}⋮5\) 

nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 5 2019 lúc 22:20

\(\Delta'=\left(m-1\right)^2+4m+3=m^2+2m+4=\left(m+1\right)^2+3>0\)

\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-4m-3\end{matrix}\right.\)

Mặt khác do \(x_1;x_2\) là nghiệm nên:

\(\left\{{}\begin{matrix}x_1^2-2\left(m-1\right)x_1-4m-3=0\\x_2^2-2\left(m-1\right)x_2-4m-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1^2-2mx_1-4m=-2x_1+3\\x_2^2-2mx_2-4m=-2x_2+3\end{matrix}\right.\)

Thay vào bài toán:

\(\Leftrightarrow\left(-2x_1+3\right)\left(-2x_2+3\right)< 0\)

\(\Leftrightarrow4x_1x_2-6\left(x_1+x_2\right)+9< 0\)

\(\Leftrightarrow-16m-12-12m+12< 0\)

\(\Leftrightarrow-28m< 0\Rightarrow m>0\)

Dương Thu Ngọc
Xem chi tiết
Phước Nguyễn
3 tháng 4 2016 lúc 21:47

Để giải được bài toán sau thì ta liên tưởng đến một tính chất rất đặc biệt và hữu ích được phát biểu như sau:

\("\) Nếu  \(a,b\)  là hai số tự nhiên nguyên tố cùng nhau và  \(a.b\)  là một số chính phương thì \(a\)  và  \(b\) đều là các số chính phương  \("\)

Ta có:

\(4m^2+m=5n^2+n\)

\(\Leftrightarrow\)  \(4m^2+m-5n^2-n=0\)

\(\Leftrightarrow\)  \(5m^2-5n^2+m-n=m^2\)

\(\Leftrightarrow\)  \(5\left(m^2-n^2\right)+\left(m-n\right)=m^2\)

\(\Leftrightarrow\)  \(\left(m-n\right)\left(5m+5n+1\right)=m^2\)  \(\left(\text{*}\right)\)

Gọi  \(d\)  là ước chung lớn nhất của  \(m-n\)  và   \(5m+5n+1\)  \(\left(\text{**}\right)\), khi đó:

\(m-n\)  chia hết cho  \(d\)   \(\Rightarrow\)  \(5\left(m-n\right)\)  chia hết cho  \(d\)

\(5m+5n+1\)  chia hết cho  \(d\)

nên   \(\left[\left(5m+5n+1\right)+5\left(m-n\right)\right]\)  chia hết cho  \(d\)

\(\Leftrightarrow\)   \(10m+1\)  chia hết cho  \(d\)   \(\left(1\right)\)

Mặt khác, từ  \(\left(\text{*}\right)\), với chú ý cách gọi ở \(\left(\text{**}\right)\), ta suy ra được:  \(m^2\)  chia hết cho  \(d^2\)

Do đó,  \(m\)  chia hết cho  \(d\)

  \(\Rightarrow\)   \(10m\)  chia hết cho  \(d\)   \(\left(2\right)\)

Từ  \(\left(1\right)\)  và  \(\left(2\right)\), ta có  \(1\)  chia hết cho  \(d\)  \(\Rightarrow\)  \(d=1\)

Do đó,  \(m-n\)  và  \(5m+5n+1\)  là các số tự nhiên nguyên tố cùng nhau  

Kết hợp với  \(\left(\text{*}\right)\)  và điều mới chứng minh trên, thỏa mãn tất cả các điều kiện cần thiết ở tính chất nêu trên nên ta có đpcm

Vậy,   \(m-n\)  và  \(5m+5n+1\)  đều là các số chính phương.

hoang le ha phuong
Xem chi tiết
Trình
5 tháng 8 2017 lúc 8:13

\(\left(m+1\right)^2\ge4m\)

\(\Leftrightarrow m^2+2m+1\ge4m\)

\(\Leftrightarrow m^2-2m+1\ge0\Leftrightarrow\left(m-1\right)^2\ge0\)

\(m^2+n^2+2\ge2\left(m+n\right)\)

\(\Leftrightarrow m^2-2m+1+n^2-2n+1\ge0\)

\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\)

Bùi Nhị Huynh
5 tháng 8 2017 lúc 8:25

làm câu đầu trước nha :

<=> m2+2m+1>=4m

<=>m2-2m+1>=0

<=>(m-1)2>=0 ( điều phải chứng minh

Nguyễn Kiều Giang
Xem chi tiết
Akai Haruma
9 tháng 9 2017 lúc 8:57

Lời giải:

Xét \(x_1,x_2\in\mathbb{R}\), giả sử \(x_1< x_2\). Ta có:

\(f(x_1)-f(x_2)=(2m^2-2m+7)x_1+3m^2-m-1-[(2m^2-4m+7)x_2+3m^2-m-1]\)

\(\Leftrightarrow f(x_1)-f(x_2)=(2m^2-2m+7)(x_1-x_2)\)

Ta thấy \(2m^2-2m+7=m^2+(m-1)^2+6\geq 6>0\) với mọi \(m\in\mathbb{R}\), mà \(x_1< x_2\)

Do đó, \((2m^2-2m+7)(x_1-x_2)< 0\Leftrightarrow f(x_1)< f(x_2)\)

Như vậy, với \(x_1< x_2\Rightarrow f(x_1) < f(x_2)\), do đó hàm số đồng biến trên R

Trần Phương Hà
Xem chi tiết
Linh_Chi_chimte
19 tháng 7 2017 lúc 21:15

\(\left(4m-1\right)\left(n-4\right)-\left(m-4\right)\left(4n-1\right)\)= 4mn-16m-n+4-4mn+m+16n=15n-15m=15(n-m)

Thấy 15 chia hết cho 5 => 15(m+n) chia hết cho 5 với mọi x

Linh_Chi_chimte
19 tháng 7 2017 lúc 21:16

Nhầm xíu, Vậy A* chia hết cho 15 với mọi m,n thuộc Z