Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
My Phạm

Cho m, n là các số thỏa mãn : 3m2 + n = 4m2 + n. Chứng minh ( m - n ) và ( 4m + 4n + 1 ) đều là số chính phương

Akai Haruma
8 tháng 11 2019 lúc 14:13

Lời giải:

Ta có:

\(3m^2+m=4n^2+n\)

\(\Leftrightarrow 4m^2+m=4n^2+n+m^2\)

\(\Leftrightarrow 4(m^2-n^2)+(m-n)=m^2\)

\(\Leftrightarrow (m-n)(4m+4n+1)=m^2\)

Đặt $d$ là ước chung lớn nhất của $m-n$ và $4m+4n+1$

\(\Rightarrow \left\{\begin{matrix} m-n\vdots d\\ 4m+4n+1\vdots d\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m^2=(m-n)(4m+4n+1)\vdots d^2\\ 4(m-n)+(4m+4n+1)\vdots d\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\vdots d\\ 8m+1\vdots d\end{matrix}\right.\Rightarrow 1\vdots d\Rightarrow d=1\)

Vậy $m-n, 4m+4n+1$ nguyên tố cùng nhau. Mà tích của chúng là 1 số chính phương nên bản thân $m-n, 4m+4n+1$ cũng là các số chính phương (đpcm).

Khách vãng lai đã xóa
Akai Haruma
18 tháng 11 2019 lúc 23:47

Lời giải:

Ta có:

\(3m^2+m=4n^2+n\)

\(\Leftrightarrow 4m^2+m=4n^2+n+m^2\)

\(\Leftrightarrow 4(m^2-n^2)+(m-n)=m^2\)

\(\Leftrightarrow (m-n)(4m+4n+1)=m^2\)

Đặt $d$ là ước chung lớn nhất của $m-n$ và $4m+4n+1$

\(\Rightarrow \left\{\begin{matrix} m-n\vdots d\\ 4m+4n+1\vdots d\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m^2=(m-n)(4m+4n+1)\vdots d^2\\ 4(m-n)+(4m+4n+1)\vdots d\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\vdots d\\ 8m+1\vdots d\end{matrix}\right.\Rightarrow 1\vdots d\Rightarrow d=1\)

Vậy $m-n, 4m+4n+1$ nguyên tố cùng nhau. Mà tích của chúng là 1 số chính phương nên bản thân $m-n, 4m+4n+1$ cũng là các số chính phương (đpcm).

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thiện Minh
Xem chi tiết
Gallavich
Xem chi tiết
trần trác tuyền
Xem chi tiết
TXT Channel Funfun
Xem chi tiết
vũ quỳnh trang
Xem chi tiết
TXT Channel Funfun
Xem chi tiết
Nguyễn Thu Hằng
Xem chi tiết
Nguyễn Đinh Thùy Trang
Xem chi tiết
物理疾驰
Xem chi tiết