a, Chứng minh bất đẳng thức a2+b2+2 ≥ 2(a+b)
b,Cho hai số thực x,y thỏa mãn điều kiện: x^2+y^2 = 1. Tìm GTLN và GTNN của x+y
c, Cho a,b > 0 và a+b = 1. Tìm GTNN của S=\(\dfrac{1}{ab}\)+1/a2+b2
cho 3 số dương a,b,c thỏa mãn ab+bc+ca=3.Chứng minh rằng :(a+b)(b+c)(c+a)>=8
Chứng minh rằng:
52005 + 52003 chia hêt cho 13
b) a2 + b2 + 1 ≥ ab + a + b
Cho a + b + c = 0. chứng minh:
a3 + b3 + c3 = 3abc
Các cao nhân giúp em ạ
em cảm ơn trước
xét hai số thực dương thỏa mãn a2 + b2 \(\le2\). Chứng minh rằng \(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\le\dfrac{2}{1+ab}\)
1. CHo số nguyên tố p thỏa mãn p+6 cũng là số nguyên tố . Chứng minh \(p^2+2021\) là hợp số
2.Tìm tất cả các số tự nhiên a để \(a^2+3a\) là số chính phương
Cho a,b,c là các số thực dương thỏa mãn \(a+b+c=1\)
chứng minh rằng \(\dfrac{ab+c}{c+1}+\dfrac{bc+a}{a+1}+\dfrac{ac+b}{b+1}\le1\)
Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng:
\(\frac{ab}{a^4+b^4+ab}+\frac{bc}{b^4+c^4+bc}+\frac{ca}{c^4+a^4+ca}\)
cho ba số thực a,b,c dương thỏa mãn abc=1. chứng minh rằng a/(2b+a) + b/(2c+b) +c/(2a+c) ≥ 1
cho các số dương a và b thỏa mãn a+b=1. chứng minh rằng \(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\ge9\)