Cho 3 số dương a,b,c và a+b+c = 1. Cmr 1/a + 1/b + 1/c > hoặc = 9
cho 3 số dương a, b, c thỏa mãn a+ b+ c =1. Cmr 1/a + 1/b +1/c > hoặc =9
cho 3 số nguyên dương:0< hoặc = a < hoặc = b < hoặc = c < hoặc = 1:CMR: a/(bc+1)+b/(ac+1)+c/(ab+1)
cho 3 số dương 0 < hoặc = a<hoặc =b < hoặc = c < hoặc =1 .cmr a/(bc+1) + b/(ac+1)+c/(ab+1) < hoặc = 2
cho 3 số dương a,b,c thỏa mãn a+b+c=1. cmr 1/a+1/b+1/c>=9
đoạn trên nhầm mà là 1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)vì a+b+c=1
Vì a+b+c=1=>(a+b+c)=(1/a+1/b+1/c)*(a+b+c)
=1+1+1+a/b+b/a+a/c+c/a+b/c+c/b
Áp dung cô si cho a/b+b/a>hoac bang 2
Tg tự a/c+c/a:b/c+c/b cũng vậy
=>(a+b+c)(1/a+1/b+1/c)>hoac bang9
p =.1/a+1/b+1/c>hoac bang9
Dùng bđt Bunhiacopski ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{1}=9\)
CMR với a,b,c là các số dương ta có (a+b+c)(1/a+1/b+1/c)>= 9 >= đây là dấu lớn hơn hoặc bằng nha
xét vế trái ta có (nhân vào )
a/a + a/b + a/c + b/a + b/b + b/c + c/a + c/b +c/c >= 9
<=> 3 + ( a/b +b/a ) + (b/c + c/b )+ (c/a +a/c) >=9
áp dụng bất đẳng thức phụ : a/b + b/a >=2 , b/c + c/b >= 2 , a/c +c/a >=2 ta được
3 +2 +2+2 >=9
=> đpcm
ta CM bất đẳng thức phụ a/b +b/a >=2 nhé !
vì a/b +b/a >=2 nên ta xét hiệu:
a/b + b/c - 2 >= 0
ta quy đồng mẫu các phân số :
<=> a2 /ab + b2/ab - 2ab/ab >= 0
<=> (a2 + b2 - 2ab) / ab = (a-b)2 /ab >=0
dấu = xảy ra khi a-b =0 <=> a=b
nên a/b + b/a - 2 >=0
<=> a/b + b/a >= 2 dấu = xảy ra khi a=b
1. Cho (a/b+c) + (b/c=a)+(c/a+b)=1
CMR: (a2/b+c)+(b2/c+a)+(c2/a+b)=0
2.a. cho 3 số dương a,b,c có tổng = 1. CMR: 1/a+1/b+1/c lớn hơn hoặc = 9
b. cho a,b,c dương vs a2000+b2000=a2001+b2001=a2002+b2002
Tinh a2011+b2011
Giúp mjk vs nha
Bạn ghi đề nhớ để dấu cho đúng nhé.
\(1.\) Cho \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\) \(\left(1\right)\)
\(CMR:\) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
\(----------------------\)
Ta có:
Từ \(\left(1\right)\) \(\Rightarrow\) \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\) \(\frac{a^2}{b+c}+\frac{ab}{c+a}+\frac{ca}{a+b}+\frac{ab}{b+c}+\frac{b^2}{c+a}+\frac{bc}{a+b}+\frac{ca}{b+c}+\frac{bc}{c+a}+\frac{c^2}{a+b}=a+b+c\)
\(\Leftrightarrow\) \(\frac{a^2}{b+c}+\left(\frac{ab}{b+c}+\frac{ca}{b+c}\right)+\frac{b^2}{c+a}+\left(\frac{ab}{c+a}+\frac{bc}{c+a}\right)+\frac{c^2}{a+b}+\left(\frac{ca}{a+b}+\frac{bc}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\) \(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)
\(\Leftrightarrow\) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\) \(\left(đpcm\right)\)
Cho a,b,c dương thỏa mãn a+b+c=3. CMR: abc(1+a^2)(1+b^2)(1+c^2) nhỏ hơn hoặc bằng 8
Để chứng minh rằng biểu thức abc(1+a^2)(1+b^2)(1+c^2) nhỏ hơn hoặc bằng 8 khi a, b, c là các số dương và a + b + c = 3, chúng ta có thể sử dụng bất đẳng thức AM-GM (bất đẳng thức trung bình cộng - trung bình nhân).
Áp dụng bất đẳng thức AM-GM cho a, b, c ta có: (a + b + c)/3 >= (abc)^(1/3)
Vì a + b + c = 3, ta có: 3/3 >= (abc)^(1/3) 1 >= (abc)^(1/3) 1^3 >= abc 1 >= abc
Tiếp theo, chúng ta cần chứng minh rằng (1 + a^2)(1 + b^2)(1 + c^2) <= 8.
Áp dụng bất đẳng thức AM-GM cho (1 + a^2), (1 + b^2), (1 + c^2) ta có: (1 + a^2 + 1 + b^2 + 1 + c^2)/3 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3)
Vì a^2 + b^2 + c^2 >= 3 (bằng với bất đẳng thức Tchebyshev), ta có: (3 + a^2 + b^2 + c^2)/3 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3) (3 + a^2 + b^2 + c^2)/3 >= (3 + a^2 + b^2 + c^2)/3 1 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3) 1^3 >= (1 + a^2)(1 + b^2)(1 + c^2) 1 >= (1 + a^2)(1 + b^2)(1 + c^2)
Từ hai bất đẳng thức trên, ta có: abc(1 + a^2)(1 + b^2)(1 + c^2) <= 1 * 1 = 1
Do đó, khi a, b, c là các số dương và a + b + c = 3, ta có abc(1 + a^2)(1 + b^2)(1 + c^2) <= 1, và vì 1 nhỏ hơn hoặc bằng 8, nên ta có: abc(1 + a^2)(1 + b^2)(1 + c^2) <= 8.
Vậy, chúng ta đã chứng minh được rằng biểu thức abc(1 + a^2)(1 + b^2)(1 + c^2) nhỏ hơn hoặc bằng 8 khi a, b, c là các số dương và a + b + c = 3.
Cho 3 số dương \(a,b,c\) và \(a+b+c=1\)
CMR \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)
-Áp dụng BĐT Caushy Schwarz ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{1}=9\)
-Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
cmr
với mọi a,b,c là các số nguyên dương.,ta có
(a+b+c). (1/a+1/b+1/c) lớn hơn hoặc bằng 9.
giúp e bài toán này với