Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Ngọc Anh
Xem chi tiết
Nguyễn Linh Chi
22 tháng 4 2019 lúc 14:46

\(P=a^2+a^2+b^2+b^2+ab-2ab-6a+3b+6b+2020\)

\(=\left(a^2+b^2+ab+3b\right)+\left(a^2+b^2-2ab-6a+6b+9\right)-9+2020\)

\(=0+\left(a-b-3\right)^2+2011\ge2011\)

Dấu "="  xảy ra <=> a-b-3=0 <=> a=b+3 thế vào \(a^2+b^2+ab+3b=0\). Ta có:

\(\left(b+3\right)^2+b^2+b\left(b+3\right)+3b=0\)

<=> \(3b^2+12b+9=0\Leftrightarrow\orbr{\begin{cases}b=-1\\b=-3\end{cases}}\)

+) Với b=-1 

ta có:  a=-1+3=2 

Nên a+b=1 >-2 loại

+) Với b=-3

Ta có: a=-3+3=0

Nên  a+b=0+-3<-2 tm

Vậy min P=2011 khi và chỉ khi a=0; b=-3

Ngô Ngọc Anh
22 tháng 4 2019 lúc 14:54

Em cảm ơn c Nguyễn Linh Chi ạ!

Trần Trung Hiếu
Xem chi tiết
Trần Trung Hiếu
Xem chi tiết
Kinder
Xem chi tiết
Lê Thị Thục Hiền
13 tháng 6 2021 lúc 14:28

Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) 

Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)

CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)

\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)

Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)

Dấu = xảy ra khi a=b=c=3

Lê Thị Thục Hiền
13 tháng 6 2021 lúc 14:46

Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)

\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)

\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)

\(=9a^2b^2-2ab+48\)

Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)

Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)

 \(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)

\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)

Vậy...

Nguyễn Việt Lâm
13 tháng 6 2021 lúc 14:46

2,

\(ab\le\dfrac{1}{4}\left(a+b\right)^2=1\Rightarrow0\le ab\le1\)

\(E=9a^2b^2+6\left(a^3+b^3\right)+5ab\left(a+b\right)+24ab\)

\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+5ab\left(a+b\right)+24ab\)

\(=9a^2b^2-2ab+48\)

Đặt \(ab=x\Rightarrow0\le x\le1\)

\(E=9x^2-2x+48=\left(x-1\right)\left(9x+7\right)+55\le55\)

\(E_{max}=55\) khi \(x=1\) hay \(a=b=1\)

Tran Phut
Xem chi tiết

loading...

Nguyễn Hải Anh
Xem chi tiết
02-Nguyễn Thiện Anh
Xem chi tiết

a: Ta có: \(\frac{1}{2a-b}-\frac{a^2-1}{2a^3-b+2a-a^2b}\)

\(=\frac{1}{2a-b}-\frac{a^2-1}{a^2\left(2a-b\right)+\left(2a-b\right)}\)

\(=\frac{1}{2a-b}-\frac{a^2-1}{\left(2a-b\right)\left(a^2+1\right)}=\frac{a^2+1-a^2+1}{\left(2a-b\right)\left(a^2+1\right)}=\frac{2}{\left(2a-b\right)\left(a^2+1\right)}\)

\(\frac{4a+2b}{a^3b+ab}-\frac{2}{a}\)

\(=\frac{4a+2b}{ab\left(a^2+1\right)}-\frac{2}{a}=\frac{4a+2b-2b\left(a^2+1\right)}{ab\left(a^2+1\right)}\)

\(=\frac{4a-2a^2b}{ab\left(a^2+1\right)}=\frac{2a\left(2-ab\right)}{ab\cdot\left(a^2+1\right)}=\frac{2\left(2-ab\right)}{b\left(a^2+1\right)}\)

Ta có: \(A=\left(\frac{1}{2a-b}-\frac{a^2-1}{2a^3-b+2a-a^2b}\right):\left(\frac{4a+2b}{a^3b+ab}-\frac{2}{a}\right)\)

\(=\frac{2}{\left(2a-b\right)\left(a^2+1\right)}:\frac{2\left(2-ab\right)}{b\left(a^2+1\right)}=\frac{2b\left(a^2+1\right)}{2\left(2-ab\right)\left(2a-b\right)\left(a^2+1\right)}=\frac{b}{\left(2-ab\right)\left(2a-b\right)}\)

b:

Sửa đề: b>a>0

\(4a^2+b^2=5ab\)

=>\(4a^2-5ab+b^2=0\)

=>\(4a^2-4ab-ab+b^2=0\)

=>(a-b)(4a-b)=0

TH1: a-b=0

=>a=b

mà a>b

nên Loại

TH2: 4a-b=0

=>b=4a(nhận)

\(A=\frac{b}{\left(2-ab\right)\left(2a-b\right)}\)

\(=\frac{4a}{\left(2-a\cdot4a\right)\left(2a-4a\right)}=\frac{4a}{\left(2-4a^2\right)\left(-2a\right)}\)

\(=\frac{4a}{-2a\cdot\left(-2\right)\left(2a^2-1\right)}=\frac{1}{2a^2-1}\)

Dung Vu
Xem chi tiết
Mineru
26 tháng 11 2021 lúc 9:09

A = 0

Vương Hương Giang
26 tháng 11 2021 lúc 9:17

A=0

43	Phạm Minh	Vũ
6 tháng 1 lúc 21:40

Vô nghiệm vì ab =0 và không có số nào chia được cho 0

Lâm Di Thảo
Xem chi tiết