CMR
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b>0
Với a,b,c>0.Cmr
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)
\(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(VT\ge\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}=\left(\frac{1}{a+b}+\frac{1}{b+c}\right)+\left(\frac{1}{b+c}+\frac{1}{c+a}\right)+\left(\frac{1}{a+b}+\frac{1}{c+a}\right)\)
\(VT\ge\frac{4}{a+2b+c}+\frac{4}{a+b+2c}+\frac{4}{2a+b+c}\)
Dấu "=" xảy ra khi \(a=b=c\)
CMR với mọi a,b > 0:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\).
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Rightarrow ab+b^2+a^2+ab\ge4ab\left(a,b>0\right)\)
<=>a2+b2-2ab\(\ge\)0
<=>(a-b)2\(\ge\)0(luôn đúng)
=>điều cần chứng minh
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)
(a + b) (a + b) \(\ge\) 4ab
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
Mà a,b > 0 nên a + b > 0
=> \(\left(a+b\right)^2\ge4ab\)
a, Cho a,b>0 , CMR: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
b. Cho a,b,c,d > 0. CMR: \(\frac{a-d}{d+b}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\ge0\)
a/ Biến đổi tương đương:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)
\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)
\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)
\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)
\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)
1.Cho a>0,b>0
CMR: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{b}{ab}+\frac{a}{ab}\ge\frac{4}{a+b}\)
\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\left(đpcm\right)\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) \(\left(ĐK:a>0;b>0\right)\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (BĐT luôn đúng)
Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Áp dụng BĐT Cauchy-schwarz ta có:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{2^2}{a+b}=\frac{4}{a+b}\)
đpcm
Tham khảo nhé~
(4)Bài 1:Với \(\forall\) a>b>0. CMR: a+ \(\frac{1}{b\left(a-b\right)}\ge3\)
(7) Bài 2: Cho a,b,c \(\ne\) 0 .CMR: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
(8) Bài 3: Cho a,b,c>0 thõa mãn abc=1
CMR: \(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
Các bạn giúp mình với nha:
Cho a,b,c>0 và a+b+c=1.
CMR\(\frac{a.b}{a^2+b^2}+\frac{b.c}{b^2+c^2}+\frac{c.a}{c^2+a^2}+\frac{1}{4}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{15}{4}\)
dự đoán của Thần thánh
\(\frac{ab}{a^2+b^2}=\frac{a^2}{2a^2}=\frac{1}{2}\)
\(VT=\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)
\(p=\frac{ab}{a^2+b^2}+....+\frac{ca}{c^2+a^2};A=\frac{1}{4}\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}\right)\)
áp dụng BDT cô si ta có
\(\frac{ab}{a^2+b^2}+\frac{\left(a^2+b^2\right)}{\frac{4}{9}}\ge2\sqrt{\frac{ab}{\frac{4}{9}}}=\frac{2}{\frac{2}{3}}\sqrt{ab}=3\sqrt{ab}\)
tương tự với các BDT còn lại suy ra
\(p+\frac{9}{4}\left(2a^2+2b^2+2c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
\(P+\frac{9}{2}\left(a^2+b^2+c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
áp dụng BDT cô si ta có
\(a^2+\frac{1}{9}\ge2\sqrt{\frac{a^2}{9}}=\frac{2a}{3}\)
tương tự với b^2+c^2 ta được
\(a^2+b^2+c^2+\frac{1}{3}\ge\frac{2}{3}\left(a+b+c\right)=\frac{2}{3}\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)
" thay 1/3 vào ta được
\(p+\frac{3}{2}\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
áp dụng BDT cô si dạng " Rei " " luôn đúng với những bài ngược dấu "
\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{abc}}=3\sqrt[3]{abc}\)
mà \(a+b+c\ge3\sqrt[3]{abc}\)
thay a+b+c=1 vào ta được
\(P+\frac{3}{2}\ge3\Leftrightarrow P\ge\frac{6}{2}-\frac{3}{2}=\frac{3}{2}\) " 1 "
bây giờ tính nốt con \(A=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
áp dụng BDT \(\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{a+b+c}\)
\(A=\frac{9}{4}.\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{4}\left(\frac{1}{a+b+c}\right)\)
mà a+b+C=1 suy ra
\(A\ge\frac{9}{4}\) "2"
từ 1 và 2 suy ra
\(VT=P+A\ge\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)
" đúng với dự đoán của thần thánh "
Bài 1: Cho a,b>0.CMR: \(ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1\)
Bài 2: Với \(\forall\)a \(\in\)R. CMR: \(a+\frac{1}{a-1}\ge3\)
Bài 3: Với mọi a,b,c>0. CMR: \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
1)Áp dụng bđt AM-GM:
\(2\left(ab+\frac{a}{b}+\frac{b}{a}\right)=\left(ab+\frac{a}{b}\right)+\left(ab+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\ge2\left(a+b+1\right)\)
\(\Leftrightarrow ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1."="\Leftrightarrow a=b=1\)
2) Áp dụng bđt AM-GM ta có: \(a+\frac{1}{a-1}=a-1+1+\frac{1}{a-1}\ge2\sqrt{\left(a-1\right).\frac{1}{a-1}}+1=3\)
\("="\Leftrightarrow a=2\)
3) Áp dụng bđt AM-GM:
\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)=\left(\frac{ab}{c}+\frac{bc}{a}\right)+\left(\frac{ac}{b}+\frac{ab}{c}\right)+\left(\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)
Cộng theo vế và rg => ddpcm. Dấu bằng khi a=b=c
cho a,b>0 cm\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\) nếu \(ab\ge1\)
b) cho a,b,c\(\ge\)1. CMR \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{1}{1+c^4}\ge\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)
\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)
b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)
\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)
Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)
Cộng vế với vế ta có đpcm
câu 1 :Cmr a)\(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)
b) \(\frac{a^3+b^3+c^3}{3}\ge\left(\frac{a+b+c}{3}\right)^3\)
câu 2 : cho a+b=1 .Cm \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
câu 3: cho a+b+c=1và a,b,c>0.CMR \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
câu 4 Tim max của : ab+2(a+b) ...biết a2+b2=1
Câu 2)
Ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{\left(a+1\right)b+a+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{ab+b+a+1}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{ab+2}\ge\frac{4}{3}\)
\(\Leftrightarrow9\ge4\left(ab+2\right)\)
\(\Rightarrow9\ge4ab+8\)
\(\Rightarrow1\ge4ab\)
Do \(a+b=1\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow a^2+2ab+b^2\ge4ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (đpcm )
Câu 3)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Mà \(a+b+c=1\)
\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)
\(\Rightarrow a+b+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Áp dụng bất đẳng thức Cô-si
\(\Rightarrow\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc}\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều này luôn luôn đúng)
\(\Rightarrow\) ĐPCM