\(\dfrac{x}{y+z+t}\)=\(\dfrac{y}{z+t+x}\)=\(\dfrac{z}{t+x+y}\)=\(\dfrac{t}{x+y+z}\)
Cho cac số dương `x;y;z` và `t` . Cm:
\(\dfrac{x}{y+z+t}+\dfrac{y}{z+t+x}+\dfrac{z}{t+x+y}+\dfrac{t}{x+y+z}+\dfrac{y+z+t}{x}+\dfrac{z+t+x}{y}+\dfrac{t+x+y}{z}+\dfrac{x+y+x}{t}\ge\dfrac{40}{3}\)
Phân số cuối cùng chắc em ghi nhầm
\(\dfrac{x}{y+z+t}+\dfrac{y+z+t}{9x}\ge2\sqrt{\dfrac{x\left(y+z+t\right)}{9x\left(y+z+t\right)}}=\dfrac{2}{3}\)
Tương tự:
\(\dfrac{y}{z+t+x}+\dfrac{z+t+x}{9y}\ge\dfrac{2}{3}\)
\(\dfrac{z}{t+x+y}+\dfrac{t+x+y}{9z}\ge\dfrac{2}{3}\)
\(\dfrac{t}{x+y+z}+\dfrac{x+y+z}{9t}\ge\dfrac{2}{3}\)
Đồng thời:
\(\dfrac{8}{9}\left(\dfrac{y+z+t}{x}+\dfrac{z+t+x}{y}+\dfrac{t+x+y}{z}+\dfrac{x+y+z}{t}\right)\)
\(\ge\dfrac{8}{9}\left(\dfrac{3\sqrt[3]{yzt}}{x}+\dfrac{3\sqrt[3]{ztx}}{y}+\dfrac{3\sqrt[3]{txy}}{z}+\dfrac{3\sqrt[3]{xyz}}{t}\right)\)
\(\ge\dfrac{8}{3}.4\sqrt[4]{\dfrac{\sqrt[3]{yzt}.\sqrt[3]{ztx}.\sqrt[3]{txy}.\sqrt[3]{xyz}}{xyzt}}=\dfrac{32}{3}\)
Cộng vế:
\(VT\ge4.\dfrac{2}{3}+\dfrac{32}{3}=\dfrac{40}{3}\)
Dấu "=" xảy ra khi \(x=y=z=t\)
Cho \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
CMR biểu thức sau có giá trị nguyên
\(A=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+z}{y+z}\)
TH1: \(x+y+z+t\ne0\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)\(\dfrac{x}{y+z+t}=\dfrac{1}{3}\Rightarrow3x=y+z+t\Rightarrow4x=x+y+z+t\\ \dfrac{y}{z+t+x}=\dfrac{1}{3}\Rightarrow3y=x+z+t\Rightarrow4y=x+y+z+t\\ \dfrac{z}{t+x+y}=\dfrac{1}{3}\Rightarrow3z=x+y+t\Rightarrow4z=x+y+z+t\\ \dfrac{t}{x+y+z}=\dfrac{1}{3}\Rightarrow3t=x+y+z\Rightarrow4t=x+y+z+t\)
\(\Rightarrow4x=4y=4z=4t\\ \Rightarrow x=y=z=t\)
\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\\ =1+1+1+1\\ =4\)
TH2: \(x+y+z+t=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{matrix}\right.\)
\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\\ =\dfrac{-\left(z+t\right)}{z+t}+\dfrac{-\left(t+x\right)}{t+x}+\dfrac{-\left(x+y\right)}{x+y}+\dfrac{-\left(y+z\right)}{y+z}\\ =-1-1-1-1\\ =-4\)
cho các số thực x,y,z,t thoả mãn\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
cmr P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)
có giá trị nguyên
Từ gt của đề bài :
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{y+z+t}\text{=}\dfrac{y}{z+t+x}\text{=}\dfrac{z}{x+y+t}\text{=}\dfrac{t}{x+y+z}\text{=}\dfrac{x+y+z+t}{3.\left(x+y+z+t\right)}\left(\cdot\right)\)
Xét TH : \(x+y+z+t\text{=}0\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z\text{=}-\left(x+t\right)\\z+t\text{=}-\left(x+y\right)\\x+t\text{=}-\left(y+z\right)\end{matrix}\right.\)
Do đó : \(P\text{=}-1+-1+-1+-1\)
\(P\text{=}-4\in Z\)
TH : \(x+y+z+t\ne0\)
\(\Rightarrow\left(\cdot\right)\text{=}\dfrac{1}{3}\)
Do đó : \(\dfrac{x}{y+z+t}\text{=}\dfrac{1}{3}\Rightarrow3x\text{=}y+z+t\)
\(\Rightarrow4x\text{=}x+y+z+t\)
\(CMTT:\left\{{}\begin{matrix}4y\text{=}x+y+z+t\\4z\text{=}x+y+z+t\\4t\text{=}x+y+z+t\end{matrix}\right.\)
Mà : \(\dfrac{x}{y+z+t}\text{=}\dfrac{y}{x+z+t}\text{=}\dfrac{z}{x+y+t}\text{=}\dfrac{t}{x+y+z}\)
\(\Rightarrow4x\text{=}4y\text{=}4z\text{=}4t\)
\(\Rightarrow x\text{=}y\text{=}z\text{=}t\)
Do đó : \(P\text{=}4\in Z\)
\(\Rightarrowđpcm\)
Kham khảo :
https://olm.vn/cau-hoi/cho-cac-so-thuc-xyzt-thoa-mandfracxyztdfracyztxdfracztxydfractxyz-cmr-p-dfracxyztdfracyztx.8377111224063.
Bạn vuốt xuống dưới để xem đáp án nha.
Cho biểu thức \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\) tính giá trị biểu thức P biết \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Cho biểu thức \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\) tính giá trị biểu thức P biết \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
TH1: \(x+y+z+t\ne0\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)\(\dfrac{x}{y+z+t}=\dfrac{1}{3}\Rightarrow3x=y+z+t\Rightarrow4x=x+y+z+t\\ \dfrac{y}{z+t+x}=\dfrac{1}{3}\Rightarrow3y=x+z+t\Rightarrow4y=x+y+z+t\\ \dfrac{z}{t+x+y}=\dfrac{1}{3}\Rightarrow3z=x+y+t\Rightarrow4z=x+y+z+t\\ \dfrac{t}{x+y+z}=\dfrac{1}{3}\Rightarrow3t=x+y+z\Rightarrow4t=x+y+z+t\)
\(\Rightarrow4x=4y=4z=4t\\
\Rightarrow x=y=z=t\)
\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\\ =1+1+1+1\\ =4\)
TH1: \(x+y+z+t=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{matrix}\right.\)
\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\\ =\dfrac{-\left(z+t\right)}{z+t}+\dfrac{-\left(t+x\right)}{t+x}+\dfrac{-\left(x+y\right)}{x+y}+\dfrac{-\left(y+z\right)}{y+z}\\ =-1-1-1-1\\ =-4\)
Cho biểu thức \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\) tính giá trị biểu thức P biết \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Tham khảo: https://hoc24.vn/cau-hoi/cho-bieu-thuc-pdfracxyztdfracyztxdfracztxydfractxyz-tinh-gia-tri-bieu-thuc-p-biet-dfracxyztdfracyzt.3023321885549
Cho biểu thức \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\) tính giá trị biểu thức P biết \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Bạn lưu ý không đăng lặp bài gây loãng box toán.
Cho biểu thức \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\) tính giá trị biểu thức P biết \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Lời giải:
Nếu $x+y+z+t=0$ thì:
$P=\frac{-(z+t)}{z+t}+\frac{-(t+x)}{t+x}+\frac{-(x+y)}{x+y}+\frac{-(y+z)}{y+z}$
$=-1+(-1)+(-1)+(-1)=-4$
Nếu $x+y+z+t\neq 0$ thì áp dụng TCDTSBN:
$\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3(x+y+z+t)}=\frac{1}{3}$
$\Rightarrow 3x=y+z+t; 3y=z+t+x; 3z=t+x+y; 3t=x+y+z$
$\Rightarrow x=y=z=t$
$\Rightarrow P=1+1+1+1=4$
Cho dãy tỉ số bằng nhau:\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Chứng minh rằng : \(p=\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\) có giá trị nguyên.
Bài 1 : Cho \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
chứng minh rằng biểu thức sau có gía trị nguyên
\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\)