tính giá trị biểu thức :
A = 2013 x 14 + 1998 + 2010 x 2012
2025 + 2025 x 2012 - 2025 x2013
Cho x² + 3y² - 4xy - 2y + 4 = 0
Tính giá trị của biểu thức A = (x - 3)²⁰²³ + (y - 1)²⁰²⁴ + 2025
Bạn xem lại đề. Có vẻ phương trình đã cho không đúng.
giá trị nhỏ nhất của biểu thức :căn bậc hai của ( x^2 + 9 ) - 2025
phần (...) là trong căn bậc nha mn
a -2025 b2025 c-2022 d0
Do \(x^2\ge0;\forall x\)
\(\Rightarrow\sqrt{x^2+9}-2025\ge\sqrt{0+9}-2025=-2022\)
C là đáp án đúng
giá trị nhỏ nhất của biểu thức :căn bậc hai của ( x^2 + 9 ) - 2025
phần (...) là trong căn bậc nha mn
a -2025 b2025 c-2022 d0
Tìm giá trị lớn nhất của biểu thức P=|x+2023|-|2025-x|
Tìm giá trị nhỏ nhất của biểu thức M = x² + y² + xy - x + y + 2025.
Lời giải:
$M=x^2+y^2+xy-x+y+2025$
$2M=2x^2+2y^2+2xy-2x+2y+4050$
$=(x^2+2xy+y^2)+(x^2-2x+1)+(y^2+2y+1)+4048$
$=(x+y)^2+(x-1)^2+(y+1)^2+4048\geq 0+0+0+4048 = 4048$
$\Rightarrow M\geq 2024$
Vậy $M_{\min}=2024$
Giá trị này đạt tại $x+y=x-1=y+1=0$
$\Leftrightarrow x=1; y=-1$
ko tính giá trị của biểu thức hãy so sánh A và B
A = 2010 . 2020 + 10 và B= 2015 . 2015 + 10
A= 2015 . 2020 _ 1 và B = 2010 .2025 _ 1
A = 2010 . 2020 + 10 và B = 2015 . 2015 + 10
A = 2010 . 2020 + 10
A = 2010 . ( 2015 + 5 ) + 10
A = 2010 . 2015 + 2010 . 5 + 10
B = 2015 . 2015 + 10
B = (2010 + 5) . 2015+ 10
B = 2010.2015 + 2015.5 + 10
Vì 2010.5 < 2015.5 nên A < B
A = 2015 . 2020 - 1
A = ( 2010 + 5 ) . 2020 - 1
A = 2010 . 2020 + 2020 . 5 - 1
B = 2010 . 2025 - 1
B = 2010 . ( 2020 + 5 ) - 1
B = 2010 . 2020 + 2010 . 5 - 1.
Vì 2020.5 > 2010.5 nên A > B.
( Dấu chấm là dấu nhân nha bạn )
Cho các số x, y thỏa mãn đẳng thức \(5x^2+5y^2+8xy-2x+2y+2=0\). Tính giá trị của biểu thức
\(M=\left(x+y\right)^{2023}+\left(x-2\right)^{2024}+\left(y+1\right)^{2025}\)
\(5x^2+5y^2+8xy-2x+2y+2=0\)
=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
=>x=1 và y=-1
\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)
Tính giá trị của đa thức:
F(x) = x^2013 - 2013x^2012 + 2013x^2011 - 2013x^2010 + ... + 2013x- 1 tại x = 2012
f(x) = x2013 - 2013x2012 + 2013x2011 - 2013x2010 + .... + 2013x - 1
= x2013 - (2012 + 1)x2012 + (2012 + 1)x2011 - (2012 + 1)x2010 + .... + (2012 + 1)x - 1
= x2013 - (x + 1)x2012 + (x + 1)x2011 - (x + 1)x2010 + .... + (x + 1)x - 1
= x2013 - x . x2012 - 1 . x2012 + x . x2011 + 1 . x2011 - x . x2010 - 1 . x2010 + ... + x . x + 1 . x - 1
= x2013 - x2013 - x2012 + x2012 + x2011 - x2011 - x2010 + .... + x2 + x - 1
= x - 1 = 2012 - 1 = 2011
Tìm giá trị nhỏ nhất của biểu thức:
A =|3x-4| + |5x-7| -x +2025
A =|3x-4| + |5x-7| -x +2025
- Nếu x < \(\dfrac{4}{3}\):
\(\Rightarrow\) \(\left\{{}\begin{matrix}3x-4< 0\\5x-7< 0\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\text{|}3x-4\text{|}=-3+4\\\text{|}5x-7\text{|}=-5x+7\end{matrix}\right.\)
\(\Rightarrow\) \(A=-3x+4-5x+7-x+2025\)
Vì x \(< \dfrac{4}{3}\) \(\Rightarrow\) \(9x< 12\) \(\Rightarrow\) \(-9x>-12\)
\(\Rightarrow\) \(-9x+2036>2024\)
\(\Rightarrow\) A \(>2024\) ( Loại)
Nếu \(\dfrac{4}{3}\) \(\le\) x \(< \dfrac{7}{5}\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}3x-4>0\\5x-7< 0\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\text{|}3x-4\text{|}=3x-4\\\text{|}5x-7\text{|}=-5x+7\end{matrix}\right.\)
\(\Rightarrow\) A= \(-3x-4-5x+7-x+2025\)
= \(-3x+2028\)
Ta có: \(\dfrac{4}{3}\) \(\le x\) \(\Rightarrow\) \(-3x\) \(>\dfrac{-21}{5}\)
\(\Rightarrow\) 2024 \(\ge\) \(-3x+2028>\dfrac{10119}{5}\) ( loại)
Nếu x :
\(\ge\dfrac{7}{5}\\ \Rightarrow\left\{{}\begin{matrix}3x-4>0\\5x-7>0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\text{|}3x-4\text{|}=3x-4\\\text{|}5x-7\text{|}=5x-7\end{matrix}\right.\\ \Rightarrow A=3x-4+5x-7-x+2025\)
\(=7x+2014\)
Vì \(x\ge\dfrac{7}{5}\) \(\Rightarrow\) \(7x\ge\dfrac{49}{5}\)
\(\Rightarrow\) \(7x+2014\) \(\ge\dfrac{19}{5}+2014=\dfrac{10119}{5}\)
\(\Rightarrow\) A \(\ge\) \(\dfrac{10119}{5}\) ( t/m)
Vậy A đạt GTNN khi A bằng \(\dfrac{10119}{5}\)
Dấu "=" xảy ra khi \(x=\dfrac{7}{5}\)