Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thuý Vi
Xem chi tiết
Akai Haruma
5 tháng 2 lúc 23:53

Bạn xem lại đề. Có vẻ phương trình đã cho không đúng.

Nhật Minh
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2022 lúc 18:30

Do \(x^2\ge0;\forall x\)

\(\Rightarrow\sqrt{x^2+9}-2025\ge\sqrt{0+9}-2025=-2022\)

C là đáp án đúng

Nhật Minh
Xem chi tiết
Ngô Duy Khôi
26 tháng 12 2022 lúc 20:51

a

Lê Ngọc Mai
Xem chi tiết
Hoaaa Ph (Yorichou)
Xem chi tiết
Akai Haruma
31 tháng 12 2023 lúc 13:51

Lời giải:
$M=x^2+y^2+xy-x+y+2025$

$2M=2x^2+2y^2+2xy-2x+2y+4050$

$=(x^2+2xy+y^2)+(x^2-2x+1)+(y^2+2y+1)+4048$

$=(x+y)^2+(x-1)^2+(y+1)^2+4048\geq 0+0+0+4048 = 4048$
$\Rightarrow M\geq 2024$

Vậy $M_{\min}=2024$

Giá trị này đạt tại $x+y=x-1=y+1=0$

$\Leftrightarrow x=1; y=-1$

Nguyễn văn a
Xem chi tiết
Lê Quang Phúc
9 tháng 9 2017 lúc 9:15

A = 2010 . 2020 + 10 và B = 2015 . 2015 + 10 

A = 2010 . 2020 + 10

A = 2010 . ( 2015 + 5 ) + 10

A = 2010 . 2015 + 2010 . 5 + 10

B = 2015 . 2015 + 10

B = (2010 + 5) . 2015+ 10

B = 2010.2015 + 2015.5 + 10

Vì 2010.5 < 2015.5 nên A < B

A = 2015 . 2020 - 1

A = ( 2010 + 5 ) . 2020 - 1

A = 2010 . 2020 + 2020 . 5 - 1

B = 2010 . 2025 - 1

B = 2010 . ( 2020 + 5 ) - 1

B = 2010 . 2020 + 2010 . 5 - 1.

Vì 2020.5 > 2010.5 nên A > B.

( Dấu chấm là dấu nhân nha bạn )

Muichirou- san
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 10 2023 lúc 21:33

\(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>x=1 và y=-1

\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)

Khoa Nguyễn Review Game
Xem chi tiết
Nhật Hạ
30 tháng 5 2020 lúc 11:39

f(x) = x2013 - 2013x2012 + 2013x2011 - 2013x2010 + .... + 2013x - 1 

= x2013 - (2012 + 1)x2012 + (2012 + 1)x2011 - (2012 + 1)x2010 + .... + (2012 + 1)x - 1 

= x2013 - (x + 1)x2012 + (x + 1)x2011 - (x + 1)x2010 + .... + (x + 1)x - 1 

= x2013 - x . x2012 - 1 . x2012 + x . x2011 + 1 . x2011 - x . x2010 - 1 . x2010 + ... + x . x + 1 . x - 1

= x2013 - x2013 - x2012 + x2012 + x2011 - x2011 - x2010 + .... + x2 + x - 1

= x - 1 = 2012 - 1 = 2011

Khách vãng lai đã xóa
POP POP
Xem chi tiết

A =|3x-4| + |5x-7| -x +2025

- Nếu x < \(\dfrac{4}{3}\):

\(\Rightarrow\) \(\left\{{}\begin{matrix}3x-4< 0\\5x-7< 0\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\text{|}3x-4\text{|}=-3+4\\\text{|}5x-7\text{|}=-5x+7\end{matrix}\right.\) 

\(\Rightarrow\) \(A=-3x+4-5x+7-x+2025\) 

Vì x \(< \dfrac{4}{3}\) \(\Rightarrow\) \(9x< 12\) \(\Rightarrow\) \(-9x>-12\) 

\(\Rightarrow\) \(-9x+2036>2024\) 

\(\Rightarrow\) A \(>2024\) ( Loại)

Nếu \(\dfrac{4}{3}\) \(\le\) x \(< \dfrac{7}{5}\) 

\(\Rightarrow\) \(\left\{{}\begin{matrix}3x-4>0\\5x-7< 0\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\text{|}3x-4\text{|}=3x-4\\\text{|}5x-7\text{|}=-5x+7\end{matrix}\right.\) 

\(\Rightarrow\) A= \(-3x-4-5x+7-x+2025\) 

       =   \(-3x+2028\) 

Ta có: \(\dfrac{4}{3}\) \(\le x\) \(\Rightarrow\) \(-3x\) \(>\dfrac{-21}{5}\) 

\(\Rightarrow\) 2024 \(\ge\) \(-3x+2028>\dfrac{10119}{5}\) ( loại)

Nếu x :

\(\ge\dfrac{7}{5}\\ \Rightarrow\left\{{}\begin{matrix}3x-4>0\\5x-7>0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\text{|}3x-4\text{|}=3x-4\\\text{|}5x-7\text{|}=5x-7\end{matrix}\right.\\ \Rightarrow A=3x-4+5x-7-x+2025\) 

  \(=7x+2014\) 

Vì \(x\ge\dfrac{7}{5}\) \(\Rightarrow\) \(7x\ge\dfrac{49}{5}\) 

\(\Rightarrow\) \(7x+2014\) \(\ge\dfrac{19}{5}+2014=\dfrac{10119}{5}\) 

\(\Rightarrow\) A \(\ge\) \(\dfrac{10119}{5}\) (  t/m)

Vậy A đạt GTNN khi A bằng \(\dfrac{10119}{5}\)

Dấu "=" xảy ra khi  \(x=\dfrac{7}{5}\)