bài 1: tìm gtln của bt
a, A = 3 - 4x^2 - 4x
b, B = 1/x^2 - 6x + 11
Tìm Max của các BT
a, A=4x-x^2+3
b, B= -x^2+6x-11
c, C= 4x-x^2 +1
A=4x-x^2+3
= -x^2+4x+3
= -(x^2-4x-3)
= -(x^2-2*2x*1+1-4)
= -(x-1)^2+4 <4
GTLN của A là 4 khi x=1
Câu B có vấn đề bạn ơi
C=4x-x^2+1
= -x^2+4x+1
= -(x^2-4x-1)
= -(x^2-2*2x*1+1-2)
= -(x-1)^2+2 < 2
GTLN của C là 2 khi x=1
Bài 11. Tìm GTNN của
a/ A= x^2 – 4x + 2
b/ B= 4x^2 + 4x – 1
c/ C= x^2 + x
Bài 12. Tìm GTLN của
a) A= 2- 6x – 9x^2
b) B= (5-x)(3+x)
c/ = - 2x^2 + 4x
MN GIÚP MIK NHANH VS Ạ
Bài 1:
a, Tìm GTNN của A = \(4x^2+4x+11\)
b, Tìm GTLN của B = \(5-8x-x^2\)
I zì:vv
a) Ta có: \(A=4x^2+4x+11=4x^2+4x+1=10=\left(2x+1\right)^2+10\ge10\forall x\)
Vậy MinA=10 khi \(x=-\dfrac{1}{2}\)
b) Ta có: \(B=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Vậy MaxB=21 khi x=-4
Tìm GTLN của iểu thức:
a)A=x^2+6x-11
b)B=5-8x-4x^2
c)C= 1/4x^2-8x+21
d)D= 3x^2+3/x^2+x+1
Bài 4:
a, Tìm GTLN
\(Q=-x^2-y^2+4x-4y+2\)
b, Tìm GTLN
\(A=-x^2-6x+5\)
\(B=-4x^2-9y^2-4x+6y+3\)
c, TÌm GTNN
\(P=x^2+y^2-2x+6y+12\)
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
Bài 1: Tìm GTLN của:
M = x2 + 4y2 - 2x - 2xy - 10y + 8
Bài 2: Cmr
a) 192017 - 192016 chia hết 9
b) 92n + 14 chia hết 5
c) A = 11100 - 1 chia hết 10
d) B = 11100 - 1 chia hết 1000
Bài 3: Tìm GTLN của:
C = ab + 2bc + 3ca , biết a+b+c = 1
Bài 4: a) Tìm GTNN của A = x2 - 6x - 1 ; B = 4x2+4x+5
b) Tìm GTLN của C = 2x - x2- 4 ; D = -x2 - 4x
1) \(A=4x-x^2+3\)
\(A=-\left(x^2-4x-3\right)\)
\(A=-\left(x^2-4x+4\right)+7\)
\(A=-\left(x-2\right)^2+7\)
Mà: \(-\left(x-2\right)^2\le0\forall x\) nên: \(A=-\left(x-2\right)^2+7\le7\)
Dấu "=" xảy ra:
\(-\left(x-2\right)^2+7=7\)
\(\Rightarrow x=2\)
Vậy: \(A_{max}=7\) khi \(x=2\)
2) \(B=x-x^2\)
\(B=-x^2+x\)
\(B=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}\)
\(B=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)
Mà: \(-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\) nên \(B=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
Dấu "=" xảy ra:
\(-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{1}{2}\)
Vậy: \(B_{max}=\dfrac{1}{4}\) với \(x=\dfrac{1}{2}\)
Bài 1 : Tính giá trị nhỏ nhất của các bt sau
a) A=X+10x+26 với x = 45
b) B=x^2-0.2x+0.01 với 1.1
c) C=x^2+9y^2-6xy với x=16 và y=2
d) D= x^3-6x^2y+12xy^2-8y^3 với x=14 và y=2
Lưu ý giải bằng cách làm của hằng đẳng thức
Bài 2: Tìm GTNN và GTLN của các bt sau
A=x^2-3x+5
B=(2x-1)^2 +(x+2)^2
Bài 3 : Tìm GTLN của bt sau
A=4-x^2+2x
B=4x-x^2
Bai 4 Cho x+y=3.tính gt của bt A=x^2+2xy+y^2-4x^2-4y+1
Bai 5 cho a^2+b^2+c^2=m.tính gt bt sau theo m
A=(2a+2b-c^2)+(2b+2c-a)^2+(2c+2a-b)^2
Bài 6 cho (a+b)^2=2(a^2+b^2).c/m rằng a=b
Tìm GTLN của bt
A=-x2+6x+10
B=-5x2+x+3
C=-3x2+x+1
D=-4x2+x+1