Tìm nghiệm của đa thức:
\(-2x^3+2x^2-8x+7\)
tìm nghiệm của đa thức
a) x^2 + 2x +3
b) x^2 - 3x
c) 2x - 8x^3
d) 2/3- 6x^2
a) Sữa đề: \(x^2+2x-3=0\)
\(\Rightarrow x^2-x+3x-3=0\)
\(\Rightarrow x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
b) \(x^2-3x=0\)
\(\Rightarrow x\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
c) \(2x-8x^3=0\)
\(\Rightarrow2x\left(1-4x^2\right)=0\)
\(\Rightarrow2x\left(1-2x\right)\left(1+2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
d) \(\dfrac{2}{3}-6x^2=0\)
\(\Rightarrow\dfrac{2}{3}\left(1-9x^2\right)=0\)
\(\Rightarrow\dfrac{2}{3}\left(1-3x\right)\left(1+3x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}1-3x=0\\1+3x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
a) Để tìm nghiệm của đa thức x^2 + 2x + 3, ta giải phương trình x^2 + 2x + 3 = 0. Áp dụng công thức nghiệm của phương trình bậc hai, ta có: x = (-2 ± √(2^2 - 4*1*3))/(2*1) x = (-2 ± √(4 - 12))/2 x = (-2 ± √(-8))/2 x = (-2 ± 2√2i)/2 x = -1 ± √2i Vậy đa thức x^2 + 2x + 3 không có nghiệm thực. b) Để tìm nghiệm của đa thức x^2 - 3x, ta giải phương trình x^2 - 3x = 0. Áp dụng công thức nghiệm của phương trình bậc hai, ta có: x = (3 ± √(3^2 - 4*1*0))/(2*1) x = (3 ± √(9))/2 x = (3 ± 3)/2 Vậy đa thức x^2 - 3x có hai nghiệm: x = 0 và x = 3. c) Để tìm nghiệm của đa thức 2x - 8x^3, ta giải phương trình 2x - 8x^3 = 0. Ta có thể rút gọn phương trình bằng cách chia cả hai vế cho 2, ta được: x - 4x^3 = 0 Vậy đa thức 2x - 8x^3 có một nghiệm duy nhất: x = 0. d) Để tìm nghiệm của đa thức 2/3 - 6x^2, ta giải phương trình 2/3 - 6x^2 = 0. Ta có thể đưa phương trình về dạng 6x^2 = 2/3 bằng cách nhân cả hai vế cho 3, ta được: 6x^2 = 2/3 Tiếp theo, ta chia cả hai vế cho 6, ta được: x^2 = 1/9 Áp dụng căn bậc hai cho cả hai vế, ta có: x = ± √(1/9) x = ± 1/3 Vậy đa thức 2/3 - 6x^2 có hai nghiệm: x = 1/3 và x = -1/3.
a) \(x^2+2x+3=0\Rightarrow x^2+2x+1+2=0\Rightarrow\left(x+1\right)^2+2=0\left(1\right)\)
mà \(\left(x+1\right)^2\ge0\)
\(\left(1\right)\Rightarrow\) Đa thức có vô số nghiệm
b) \(x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow x=0;x=3\)
\(\Rightarrow x\in\left\{0;3\right\}\)
c) \(2x-8x^3=0\Rightarrow2x\left(1-4x^2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\1-4x^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow x\in\left\{0;\pm\dfrac{1}{2}\right\}\)
d) \(\dfrac{2}{3}-6x^2=0\Rightarrow6x^2=\dfrac{2}{3}\Rightarrow x^2=\dfrac{1}{9}\Rightarrow x=\pm\dfrac{1}{3}\)
\(\Rightarrow x\in\left\{\pm\dfrac{1}{3}\right\}\)
Tìm nghiệm của các đa thức
1: 2x-6
2: 2x^2-8x
+) \(2x-6=0\)
\(\Rightarrow x=3\)
+) \(2x^2-8x=0\)
\(2x\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
1) Đặt \(A\left(x\right)=2x-6\)
Cho \(A\left(x\right)=0\)
hay \(2x-6=0\)
\(2x\) \(=0+6\)
\(2x\) \(=6\)
\(x\) \(=6:2\)
\(x\) \(=3\)
Vậy \(x=3\) là nghiệm của đa thức A (\(x\))
2) Đặt \(B\left(x\right)=2x^2-8x\)
Cho \(B\left(x\right)=0\)
hay \(2x^2-8x=0\)
\(2.x.x-8.x=0\)
\(x.\left(2x-8\right)=0\)
⇒ \(x=0\) hoặc \(2x-8=0\)
⇒ \(x=0\) hoặc \(2x\) \(=0+8\)
⇒ \(x=0\) hoặc \(2x\) \(=8\)
⇒ \(x=0\) hoặc \(x\) \(=8:2=4\)
Vậy \(x=0\) hoặc \(x=4\) là nghiệm của đa thức B (\(x\))
Tìm nghiệm của đa thức
2x^3-8x^2+9x
\(2x^3-8x^2+9x=0\)
\(\Leftrightarrow x\left(2x^2-8x+9\right)=0\)
TH1 : x = 0
TH2 : \(2x^2-8x+9=0\)
Ta có : \(\left(-8\right)^2-4.9.2=64-72< 0\)
Nên pt vô nghiệm
Vậy nghiệm đa thức là x = 0
\(2x^3-8x^2+9x=0\)
\(< =>x\left(2x^2-8x+9\right)=0\)
\(< =>\orbr{\begin{cases}x=0\\2x^2-8x+9=0\left(1\right)\end{cases}}\)
\(\left(1\right)\)ta có : \(\Delta=\left(-8\right)^2-4.2.9=64-72=-8\)
do delta < 0 nên phương trình vô nghiệm
Vậy đa thức chỉ nhận 0 là nghiệm
tìm nghiệm của đa thức H(x)=2x^3 - 8x
Cho H(x)= 0
2x3-8x = 0
x.(2x2-8) = 0
TH1)
x =0
TH2)
2x2-8 = 0
2x2 = 8
x2 =4
x=2
Vậy nghiệm của đa thức \(H\left(x\right)=\left\{0,2\right\}\)
cho H(x)=0
\(=>2x^3-8x=0\)
\(2x^3-2x4=0\)
\(=>2x\left(x^2-4\right)=0\)
\(=>\left[{}\begin{matrix}2x=0\\x^2=4\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\end{matrix}\right.\)
Tìm nghiệm của đa thức:
B= \(2x^4-8x^2\)
2x4−8x2=0
2x2(x2-4)=0
=>2x2=0 hoặc (x2-4)=0
=>x=0 hoặc x2=4
x=2 hoặc x=-2
Tìm nghiệm của đa thức sau :
a) -3x^3+5x^2-2x
b) -1/2x^4+1/8x^2
a) \(-3x^3+5x^2-2x=0\\ \Leftrightarrow3x^3-5x^2+2x=0\\ \Leftrightarrow x\left(3x^2-5x+2\right)=0\\ \Leftrightarrow x\left(3x-2\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\\x=1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;\dfrac{2}{3};1\right\}\)
b) \(\dfrac{-1}{2}x^4+\dfrac{1}{8}x^2=0\\ \Leftrightarrow\dfrac{-1}{2}x^2\left(x^2-\dfrac{1}{4}\right)=0\\ \Leftrightarrow\dfrac{-1}{2}x^2\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;\dfrac{1}{2};\dfrac{-1}{2}\right\}\)
Tìm nghiệm của đa thức
2x^3 + x^2 - 8x -4
x^2(2x+1)-4(2x+1)
=(x^2-4)(2x+1)
R bn cho 2 cái đấy =0 từ đó tính đc mỗi cái
X có 2 gtri nha
Tự lm nốt
Ta có :
\(2x^3+x^2-8x-4=0\)
\(\Leftrightarrow\left(2x^3+4x^2\right)-\left(3x^2+6x\right)-\left(2x+4\right)=0\)
\(\Leftrightarrow2x^2\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x^2-3x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[\left(2x^2+x\right)-\left(4x+2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(2x+1\right)-2\left(2x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(2x+1\right)=0\)
Ta có các trường hợp :
* \(x+2=0\Leftrightarrow x=-2\)
* \(x-2=0\Leftrightarrow x=2\)
* \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy .....
Đa thức f(x) = 2x^3 - 8x^2 + 9x có nhiều nhất bao nhiêu nghiệm ? Tìm tất cả các nghiệm của đa thức f(x)
Help me !!!
\(2x^3-8x^2+9x=2x\left(x^2-4x+4,5\right)=2x\left[\left(x-2\right)^2+0,5\right]\)
\(\Rightarrow F\left(x\right)\)có nghiệm duy nhất là 0
Đa thức f(x) có 3 nghiệm
+) f(0) = 2 x 0^3 - 8 x 0^ 2 + 9 x 0
= 0 - 0 + 0
= 0
+)
Ta có no của đa thức f(x) =0
\(\Leftrightarrow2x^3-8x^2+9x=0\)
\(\Leftrightarrow2x.\left(x^2-4x+4,5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x^2-4x+4,5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-2\right)^2+x.5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\loai\end{cases}}}}\)
Vậy đa thức f(x) chỉ có 1 nghiệm khi và chỉ khi x= 0
Cho đa thức f(x)= 2x3-8x2+9x. Đa thức f(x) có nhiều nhất bao nhiêu nghiệm? Tìm tất cả các nghiệm của đa thức f(x)
2\(x^3\) - 8\(x^2\) + 9\(x\) = 0
\(x\)(2\(x^2\) - 8\(x\) + 9) = 0
\(\left[{}\begin{matrix}x=0\\2x^2-8x+9=0\end{matrix}\right.\)
2\(x^2\) - 8\(x\) + 9 = 0
2\(x^2\) - 4\(x\) - 4\(x\) + 8 + 1 = 0
(2\(x^2\) - 4\(x\)) - (4\(x\) - 8) + 1 = 0
2\(x\)(\(x-2\)) - 4(\(x-2\)) + 1 = 0
2(\(x-2\))(\(x\) - 2) + 1 = 0
2(\(x-2\))2 + 1 = 0 (vô lí) vì (\(x\) - 2)2 ≥ 0 \(\forall\)\(x\) ⇒ 2.(\(x-2\))2 +1 ≥ 1 > 0
Vậy 2\(x^3\) - 8\(x^2\) + 9\(x\) = 0 có nhiều nhất 1 nghiệm và đó là \(x\) = 0