Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thành piccolo
Xem chi tiết
Bla bla bla
Xem chi tiết
Nguyễn Thị Hồng Linh
Xem chi tiết
Nguyễn Linh Chi
24 tháng 6 2019 lúc 11:28

Ta có: \(\frac{ab+c}{c+1}=\frac{ab+1-a-b}{c+a+b+c}=\frac{-b\left(1-a\right)+\left(1-a\right)}{\left(a+c\right)+\left(b+c\right)}\)

\(=\frac{\left(1-a\right)\left(1-b\right)}{\left(a+c\right)+\left(b+c\right)}=\frac{\left(b+c\right)\left(a+c\right)}{\left(a+c\right)+\left(b+c\right)}\)

\(\le\frac{1}{4}\left(\frac{\left(b+c\right)\left(a+c\right)}{a+c}+\frac{\left(b+c\right)\left(a+c\right)}{b+c}\right)=\frac{a+b+2c}{4}\)

Tương tự: \(\frac{bc+a}{a+1}=\frac{b+c+2a}{4}\)

\(\frac{ca+b}{b+1}=\frac{c+a+2b}{4}\)

Cộng vế theo vế ta có: 

\(\frac{ab+c}{c+1}+\frac{bc+a}{a+1}+\frac{ca+b}{b+1}\le\frac{4a+4b+4c}{4}=a+b+c=1\)

Nguyễn Linh Chi
24 tháng 6 2019 lúc 11:30

Thiếu: 

Dấu "=" xảy ra khi và chỉ khi:

\(\frac{1}{a+b}=\frac{1}{a+c};\frac{1}{a+c}=\frac{1}{b+c};\frac{1}{b+c}=\frac{1}{b+a};a+b+c=1\)

<=> a=b=c=1/3

fan FA
Xem chi tiết
tth_new
16 tháng 1 2019 lúc 19:38

Mình có cách này,không chắc lắm:

\(VT=\frac{a}{a\left(a^2+bc+1\right)}+\frac{b}{b\left(b^2+ac+1\right)}+\frac{c}{c\left(c^2+ab+1\right)}\) (làm tắt,bạn tự hiểu nha)

\(=\frac{1}{a^2+bc+1}+\frac{1}{b^2+ac+1}+\frac{1}{c^2+ab+1}\)

\(\le\frac{1}{3}\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)\)

\(=\frac{1}{3}\left[\left(1+1+1\right)-\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\right]\)

\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)

Áp dụng BĐT Cô si với biểu thức trong ngoặc:

\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)

\(\le1-\sqrt[3]{\left(\sqrt[3]{a}-1\right)\left(\sqrt[3]{b}-1\right)\left(\sqrt[3]{c-1}\right)}\le1^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1

Đen đủi mất cái nik
17 tháng 1 2019 lúc 19:41

Ta c/m bđt sau: 

\(a^3+1\ge a^2+a\)

\(\Leftrightarrow a^3+1-a^2-a\ge0\Leftrightarrow a\left(a^2-1\right)-\left(a^2-1\right)\ge0\Leftrightarrow\left(a-1\right)^2\left(a+1\right)\ge0\)

\(\Rightarrow\frac{a}{a^3+a+1}\le\frac{a}{a^2+2a}=\frac{1}{a+2}\)

\(\Rightarrow\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\le\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)

Đặt \((a,b,c)\rightarrow(\frac{x}{y},\frac{y}{z},\frac{z}{x})\)

\(\Rightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}=\frac{1}{2}\left(1-\frac{x}{x+2y}+1-\frac{y}{y+2z}+1-\frac{z}{z+2x}\right)=\frac{3}{2}-\frac{1}{2}\left(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xy}\right)\)\(\le\frac{3}{2}-\frac{1}{2}\left(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\right)=\frac{3}{2}-\frac{1}{2}.\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Dấu bằng xảy ra khi a=b=c=1

tth_new
6 tháng 5 2019 lúc 18:55

Thấy mọe rồi,lúc đó t ngốc quá nên làm nhầm.

guard
Xem chi tiết
guard
Xem chi tiết
guard
Xem chi tiết
Nguyễn Thị Tường Vy
Xem chi tiết
Thanh Tùng DZ
31 tháng 10 2019 lúc 18:49

đặt \(A=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)

\(2A=2a\sqrt{b^3+1}+2b\sqrt{c^3+1}+2c\sqrt{a^3+1}\)

\(2A=2a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}+2b\sqrt{\left(c+1\right)\left(c^2-c+1\right)}+2c\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\)

\(\le2a.\frac{b+1+b^2-b+1}{2}+2b.\frac{c+1+c^2-c+1}{2}+2c.\frac{a+1+a^2-a+1}{2}\)

\(=a\left(b^2+2\right)+b\left(c^2+2\right)+c\left(a^2+2\right)=ab^2+bc^2+ca^2+2\left(a+b+c\right)=ab^2+bc^2+ca^2+6\)

Không mất tính tổng quát, giả sử \(a\le b\le c\), ta có :

\(a\left(c-b\right)\left(b-a\right)\ge0\Leftrightarrow abc+a^2b\ge ab^2+a^2c\)

\(\Leftrightarrow a^2b+a^2c+bc^2\le abc+a^2b+bc^2\le2abc+a^2b+bc^2=b\left(a+c\right)^2\)

Mặt khác, theo BĐT Cô-si cho 3 số dương :

\(b\left(a+c\right)^2=4b.\frac{a+c}{2}.\frac{a+c}{2}\le\frac{4}{27}\left(b+\frac{a+c}{2}+\frac{a+c}{2}\right)^3=\frac{4}{27}.\left(a+b+c\right)^3=4\)

\(\Rightarrow2A\le10\Rightarrow A\le5\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a\le b\le c;a+b+c=3\\abc=2abc\\2b=a+c\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=1\\c=2\end{cases}}}\)

Khách vãng lai đã xóa
Thanh Tùng DZ
31 tháng 10 2019 lúc 19:27

cho mình sửa lại là cái đoạn giả sử \(a\le b\le c\)

mình sẽ giả sử \(\orbr{\begin{cases}a\ge c\ge b\\b\ge c\ge a\end{cases}}\) \(\Rightarrow b\left(a-c\right)\left(c-b\right)\ge0\)( cả 2 Th )

rồi giải ra tương tự như dưới ấy là được

Khách vãng lai đã xóa
Khương Vũ Phương Anh
Xem chi tiết
Thắng Nguyễn
4 tháng 6 2018 lúc 11:36

\(\frac{1}{a^2+b^2+2}+\frac{1}{c^2+b^2+2}+\frac{1}{a^2+c^2+2}\le\frac{3}{4}\)

\(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)

\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)

\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)

Cần chứng minh \(\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) *luôn đúng*