Tìm M:1/2 :(1/3:1/4:1/5x1/120)=2008
1. Giải hpt\(\left\{{}\begin{matrix}\dfrac{3y}{x-1}+\dfrac{2x}{y+1}=3\\\dfrac{2y}{x-1}-\dfrac{5x}{y+1}=2\end{matrix}\right.\)
2.Cho PT : x2-6x+2m-3=0
-Tìm m để PT có nghiệm x1,x2 thỏa : (x12-5x1+2m-4)(x22-5x2+2m-4)=2
1.A=(2/3+3/4+4/5+................+99/100)*(1/2+2/3+..............+98/99);B=(1/2+2/3+..............+99/100)*(2/3+3//4+...................+98/99)
Tính A và B bằng cách thuận tiện nhất.
2.Cho a=2008/2009;b=2009/2008;c=1/2009;d=2007/2008
Tính a-b+c+d
3.Tìm STN m biết:
2016+m/m+2520+m/m+3024+m/m
a.1/5x1/2:3/10
b.1/2x1/3:1/4
`1/5xx1/2:3/10`
`=1/10xx10/3`
`=1/3`
`1/2xx1/3:1/4`
`=1/6xx4/1`
`=2/3`
a. \(\dfrac{1}{5}\times\dfrac{1}{2}:\dfrac{3}{10}=\dfrac{1}{10}:\dfrac{3}{10}=\dfrac{1}{10}\times\dfrac{10}{3}=\dfrac{10}{30}=\dfrac{1}{3}\)
b. \(\dfrac{1}{2}\times\dfrac{1}{3}:\dfrac{1}{4}=\dfrac{1}{6}:\dfrac{1}{4}=\dfrac{1}{6}\times\dfrac{4}{1}=\dfrac{4}{6}=\dfrac{2}{3}\)
a) \(\dfrac{1}{5}\times\dfrac{1}{2}:\dfrac{3}{10}=\dfrac{1}{5}\times\dfrac{1}{2}\times\dfrac{10}{3}=\dfrac{1\times1\times10}{5\times2\times3}=\dfrac{10}{30}=\dfrac{1}{3}\)
b) \(\dfrac{1}{2}\times\dfrac{1}{3}:\dfrac{1}{4}=\dfrac{1}{2}\times\dfrac{1}{3}\times4=\dfrac{1\times1\times4}{2\times3}=\dfrac{4}{6}=\dfrac{2}{3}\)
Cho pt : x^2 - 6x + 2n - 3=0 (1)
Tìm n để pt (1) có hai nghiệm phân biệt x1:x2 thỏa
(x1^2 - 5x1 + 2n - 4)(x2^2 - 5x2 + 2n - 4)=-4
\(\Delta'=9-\left(2n-3\right)=12-2n>0\Rightarrow n< 6\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2n-3\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt nên:
\(x_1^2-6x_1+2n-3=0\Leftrightarrow x_1^2-5x_1+2n-4=x_1-1\)
Tương tự ta có: \(x_2^2-5x_2+2n-4=x_2-1\)
Thế vào bài toán:
\(\left(x_1-1\right)\left(x_2-1\right)=-4\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1=-4\)
\(\Leftrightarrow2n-3-6+1=-4\Rightarrow n=2\)
M = 2008 + 2007/2 +2006/3 +...+2/2007 +1/2008
N = 1/2+1/3+1/4+1/5+...+1/2008+1/2009
tính M : N
\(M:N=\frac{\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)
Ta có tử số bằng: 2008+2007/2+2006/3+2005/4+…..+2/2007+1/2008
(Phân tích 2008 thành 2008 con số 1 rồi đưa vào các nhóm)
= (1 + 2007/2) + (1 + 2006/3) + (1 + 2005/4) +... + (1 + 2/2007) + ( 1 + 1/2008) + (1)
= 2009/2 + 2009/3 + 2009//4 + ……. + 2009/2007 + 2009/2008 + 2009/2009
= 2009 x (1/2 + 1/3 + 1/4 + ... + 1/2007 + 1/2008 + 1/2009)
Mẫu số: 1/2 + 1/3 + 1/4 + ... + 1/2007 + 1/2008 + 1/2009
\(\Rightarrow M:N=\frac{2009.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}=2009\)
Giá trị biểu thức A =
2008+2007/2+2006/3+2005/4+...+2/2007+1/2008
1/2+1/3+1/4+1/5+...+1/2008+1/2009
Tìm A
A=[3/10+4/5x1/2]:[1 và 8/9-1 và 1/3]
1/1x1/2+1/2x1/3+1/3x1/4+1/4x1/5+1/5x1/6
= 1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + 1/5 x 6
= (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + (1/4 - 1/5) + (1/5 - 1/6)
= 1 - 1/6
= 5/6
nha,mơn nhìu
\(\frac{1}{1}x\frac{1}{2}+\frac{1}{2}x\frac{1}{3}+\frac{1}{3}x\frac{1}{4}+\frac{1}{4}x\frac{1}{5}+\frac{1}{5}x\frac{1}{6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}=\frac{5}{6}\)
Cho phương trình:x^2-6x+2n-3=0 (với n là tham số ) (1)
1) Giải phương trình (1) với n=4
2) Tìm n để phương trình (1) có hai nghiệm phân biệt x1;x2 thỏa mãn:
(x1^2 -5x1 +2n -4)(x2^2 - 5x2 +2n-4)=-4
Thay n = 4 vào pt (1) ta có
\(x^2-6x+5=0\\ ta.có.a+b+c=1-6+5=0\\ Vậy.pt.có.n_o:\\ x_1=1;x_2=\dfrac{c}{a}=5\)
\(Ta.có:\Delta=b^2-4ac=....=-8n+48\\ Để.pt.\left(1\right).có.1.n_o.phân.biệt.thì.\Delta>0\\ \Leftrightarrow n< 6\)
Vậy m < 6 thì pt (1) có nghiệm phân biệt \(x_1;x_2\) nên theo Vi ét ta có
\(x_1+x_2=\dfrac{-b}{a}=6\\ x_1x_2=\dfrac{c}{a}=2n-3\)
Ta có
\(x^2-6x+2n-3=0\\ \Leftrightarrow x^2-5x+2n-4=x-1\)
Vì x1 x2 là nghiệm pt \(x^2-6x+2n-3=0\) nên x1 x2 là nghiệm PT \(x^2-5x+2n-4=x-1\) nên ta có
\(x_1^2-5x+2x-4=x_1-1.và\\ x_2^2-5x_2+2n-4=x_2-1\\ \Rightarrow\left(x_1^2-5x_1+2n-4\right)\left(x_2^2-5x_2+2n-4\right)=\left(x_1-1\right)\left(x_2-1\right)\)
\(Mà\\ \left(x_1^2-5x_1+2n-4\right)\left(x_2^2-5x_2+2n-4\right)=-4\\ Nên\left(x_1-1\right)\left(x_2-1\right)=-4\\ \Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1=-4\\ \Leftrightarrow2n-3-6+1=-4\\ \Leftrightarrow2n=4\Rightarrow n=2\left(tm\right)\\ ......\left(kl\right)\)