tìm tất cả số nguyên số p thỏa mãn p+4 và p+2 cũng là số nguyên tố
1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)
Tìm tất cả các số nguyên ( p,q) thỏa mãn p^q + 7q^p cũng là số nguyên tố
1. CHo số nguyên tố p thỏa mãn p+6 cũng là số nguyên tố . Chứng minh \(p^2+2021\) là hợp số
2.Tìm tất cả các số tự nhiên a để \(a^2+3a\) là số chính phương
1.
\(p=2\Rightarrow p+6=8\) ko phải SNT (ktm)
\(\Rightarrow p>2\Rightarrow p\) lẻ \(\Rightarrow p^2\) lẻ \(\Rightarrow p^2+2021\) luôn là 1 số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số
2.
\(a^2+3a=k^2\Rightarrow4a^2+12a=4k^2\)
\(\Rightarrow4a^2+12a+9=4k^2+9\Rightarrow\left(2a+3\right)^2=\left(2k\right)^2+9\)
\(\Rightarrow\left(2a+3-2k\right)\left(2a+3+2k\right)=9\)
\(\Leftrightarrow...\)
Tìm số nguyên tố p sao cho p^2+1 và p^4+1 cũng là số nguyên tố. Trả lời: Số nguyên tố thỏa mãn là p =
tìm tất cả các cặp số nguyên tố p,q thỏa mãn các số 5p + q và pq + 7 đều là số nguyên tố
Tìm tất cả các số nguyên dương thỏa mãn 2n2+3n+1 là số chính phương và n+5 là số nguyên tố
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Tìm tất cả các số nguyên tố p thỏa mãn 3p+4 là số chính phương
Đặt \(3p+4=k^2\left(k\ge4\right)\)
\(\Leftrightarrow k^2-4=3p\)
\(\Leftrightarrow\left(k-2\right)\left(k+2\right)=3p\)
Ta thấy \(0< k-2< k+2\) nên có 2TH:
TH1: \(\left\{{}\begin{matrix}k-2=1\\k+2=3p\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k=3\\3p=5\end{matrix}\right.\), vô lí.
TH2: \(\left\{{}\begin{matrix}k-2=3\\k+2=p\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=5\\p=7\end{matrix}\right.\), thỏa mãn.
Vậy \(p=7\) là số nguyên tố duy nhất thỏa ycbt.
tìm tất cả các bộ (n,k,p), với n,k là các số nguyên lớn hơn 1 và p là 1 số nguyên tố thỏa mãn \(n^5+n^4-2n^3-2n^2+1=p^k\)
Ta có:
\(n^5+n^4-2n^3-2n^2+1=p^k\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\)
Từ gt \(\Rightarrow n,k\ge2\)
Ta có:
\(\left\{{}\begin{matrix}n^3-n-1>1;n^2+n-1>1,\forall n\ge2\\\left(n^3-n-1\right)-\left(n^2+n-1\right)=\left(n+1\right)n\left(n-2\right)\ge0,\forall n\ge2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}n^3-n-1=p^r\\n^2+n-1=p^s\end{matrix}\right.\) trong đó \(\left\{{}\begin{matrix}r\ge s>0\\r+s=k\end{matrix}\right.\)
\(\Rightarrow n^3-n-1⋮n^2+n-1\)
\(\Rightarrow n^3-n-1-\left(n-1\right)\left(n^2+n-1\right)⋮n^2+n-1\)
\(\Rightarrow n-2⋮n^2+n-1\) (1)
Mặt khác:
\(\left(n^2+n-1\right)-\left(n-2\right)=n^2+1>0,\forall n\)
\(\Rightarrow n^2+n-1>n-2\ge0,\forall n\ge2\) (2)
Từ (1) và (2) => n=2 => \(p^k=25\Rightarrow\left\{{}\begin{matrix}p=5\\k=2\end{matrix}\right.\)
Vậy bộ số (n,k,p)=(2,2,5)
\(...\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\).
Do đó \(\left\{{}\begin{matrix}n^2+n-1=p^v\\n^3-n-1=p^u\end{matrix}\right.\left(v,u\in N;v+u=k\right)\).
+) Với n = 2 ta có \(p^k=25=5^2\Leftrightarrow p=5;k=2\)
+) Với n > 2 ta có \(n^3-n-1>n^2+n-1\Rightarrow v>u\Rightarrow n^3-n-1⋮n^2+n-1\)
\(\Rightarrow\left(n^2+n-1\right)\left(n-1\right)+n-2⋮n^2+n-1\)
\(\Rightarrow n-2⋮n^2+n-1\)
\(\Rightarrow\left(n-2\right)\left(n+3\right)⋮n^2+n-1\)
\(\Rightarrow6⋮n^2+n-1\).
Không tồn tại n > 2 thoả mãn
Vậy...
Tìm số nguyên tố p thỏa mãn điều sau: Nếu p và p^2 +2 là 2 số nguyên tố thì p^3 +2 cũng là số nguyên tố
*p = 2 thì p\(^2\)+2 = 6(loại vì 6 không phải là số nghuyên tố)
* p = 3 thì p\(^2\)+2 = 11(chọn vì 11 là số nghuyên tố)
\(\Rightarrow\) p\(^3\) + 2 = 3\(^3\)+2 = 29 (là số nghuyên tố)
* p >3
Vì p là số nguyên tố \(\Rightarrow\)p ko chia hết cho 3 (1)
p thuộc Z \(\Rightarrow p^2\)là số chính phương (2)
từ (1),(2) \(\Rightarrow p^2\) chia 3 dư 1
\(\Rightarrow p^2\)+2 chia hết cho 3 (3)
Mặt khác p>3
\(\Rightarrow p^2>9\)
\(\Rightarrow p^2\)+2 > 11 (4)
Từ (3),(4) \(\Rightarrow p^2\)+2 ko là số nguyên tố (trái với đề bài)