Giải PT nghiệm nguyên : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)
Giải PT nghiệm nguyên:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)
\(\frac{2y}{2xy}+\frac{2x}{2xy}+\frac{1}{2xy}=\frac{xy}{2xy}\)
\(\Leftrightarrow2y+2x+1-xy=0\)
\(\Leftrightarrow x\left(2-y\right)=-2y-1\)
\(x,y\in Z\) nên
\(\left(-2y-1\right)⋮\left(2-y\right)\)
đến đây lập bảng là xog. cũng giống như tìm để nó \(\in Z\) đó mà
Đề này thầy mk cho lm rồi nhưng chưa chữa. Mà mk cx ko lm đc.
Giải phương trình nghiệm nguyên: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)
\(\Leftrightarrow\frac{2y}{2xy}+\frac{2x}{2xy}+\frac{1}{2xy}=\frac{1}{2}\)
\(\Leftrightarrow2y+2x+1=xy\)
\(\Rightarrow2y+2x-xy=-1\)
\(\Rightarrow y\left(2-x\right)+2x=-1\)
\(\Rightarrow y\left(2-x\right)+2x-4=-1-4\)
\(\Rightarrow y\left(2-x\right)-4+2x=-5\)
\(\Leftrightarrow y\left(2-x\right)-2\left(2-x\right)=-5\)
\(\Leftrightarrow\left(y-2\right)\left(2-x\right)=-5\)
y-2 | -5 | -1 | 5 | 1 |
2-x | 1 | 5 | -1 | -5 |
x | 1 | -3 | 3 | 7 |
y | -3 | 1 | 7 | 3 |
Vậy các cặp số (x,y) thỏa mãn là (1, -3); (-3; 1); (3, 7); (7, 3).
Nhờ bạn sửa lại dòng 2 : \(\frac{2y}{2xy}+\frac{2x}{2xy}+\frac{1}{2xy}=\frac{1}{2}\). Bạn sửa lại thành \(\frac{2y}{2xy}+\frac{2x}{2xy}+\frac{1}{2xy}=\frac{xy}{2xy}\)
Trl
-Bạn kia làm đúng rồi !~
Học tốt
nhé bạn :>
giải phương trình với nghiệm nguyên :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)
a) giải hệ phương trình
\(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\\xy+\frac{1}{xy}=\frac{5}{2}\end{cases}}\)
b) giải pt \(\sqrt{2x+1}-\sqrt{3x}=x-1\)
c) tìm nghiệm nguyên dương của pt x3y+xy3-3x2-3y2=17
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
c) \(x^3y+xy^3-3x^2-3y^2=17\)
\(\Leftrightarrow xy\left(x^2+y^2\right)-3\left(x^2+y^2\right)=17\Leftrightarrow\left(x^2+y^2\right)\left(xy-3\right)=17\)
\(\Leftrightarrow\left(x^2+y^2\right),\left(xy-3\right)\inƯ\left(17\right)\)
Do \(x^2+y^2\ge0\Rightarrow x^2+y^2\in\left\{1;17\right\}\)
TH1: \(\hept{\begin{cases}x^2+y^2=1\\xy-3=17\end{cases}}\Rightarrow\hept{\begin{cases}\frac{400}{y^2}+y^2=1\\x=\frac{20}{y}\end{cases}}\) (vô nghiệm)
TH2: \(\hept{\begin{cases}x^2+y^2=17\\xy-3=1\end{cases}}\Rightarrow\hept{\begin{cases}\frac{16}{y^2}+y^2=17\\x=\frac{4}{y}\end{cases}}\)
Ta có bảng:
y2 | 16 | 16 | 1 | 1 |
y | 4 | -4 | 1 | -1 |
x | 1 | -1 | 4 | -4 |
Vậy các cặp số nguyên thỏa mãn là (x;y) = (1;4) ; (-1;-4) ; (4;1) ; (-4;-1).
tìm nghiệm nguyên cua phuong trinh
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)
Bài 1: Giải pt: 16x^4-72x^3+16x-28=16\(\sqrt{x-2}\)
Bài 2: Giải hệ : \(x^2+y^2=\frac{1}{2}\)và \(4x\left(x^3-x^2+x+1\right)=y^2+2xy-1\)
Bài 3: Giải hệ: \(\frac{1}{\sqrt{x}}+\sqrt{2-\frac{1}{y}}=2\)và \(\frac{1}{\sqrt{y}}+\sqrt{2-\frac{1}{x}}=2\)
Bài 4: Tìm nghiệm nguyên dương:
\(\hept{\begin{cases}x+y=z\\x^3+y^3=z^2\end{cases}}\)
Giải phương trình nghiệm nguyên: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)
ĐK: \(x;y\ne0\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)
\(\Leftrightarrow\frac{2x+2y+1}{2xy}=\frac{1}{2}\)
\(\Leftrightarrow4x+4y+2=2xy\)
\(\Leftrightarrow2x+2y+1=xy\)
\(\Leftrightarrow xy-2y=2x+1\)
\(\Leftrightarrow y=\frac{2x+1}{x-2}\)
Vì y nguyên nên \(\frac{2x+1}{x-2}\) nguyên mà x nguyên nên \(2x+1\) và \(x-2\) nguyên.
Do đó \(2x+1⋮x-2\)
\(\Leftrightarrow2\left(x-2\right)+5⋮x-2\)
\(\Leftrightarrow5⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow x\in\left\{3;1;7;-3\right\}\)( thỏa )
Từ đó thế vào pt tìm y.
Vậy...
Tìm nghiệm nguyên của pt: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)
1/x+1/y=1/2
\(\Leftrightarrow\)x+y/xy=1/2
\(\Leftrightarrow\)2x+2y-xy=0
\(\Leftrightarrow\)2x+y(2-x)=0
\(\Leftrightarrow\)4-2x+y(2-x)=4
\(\Leftrightarrow\)2(2-x)+y(2-x)=4
\(\Leftrightarrow\)(2+y)(2-x)=4
do x;y \(\in Z\)\(\Rightarrow\)2+y;2-x \(\in Z\)
\(\Rightarrow\)2+y;2-x \(\inƯ\left(4\right)\)={-1;1;-2;2;-4;4}
do x;y\(\ne\)0\(\Rightarrow\)\(\hept{\begin{cases}2-x\ne2\\2+y\ne2\end{cases}}\)
đến đây thì đơn giản rùi,các bạn tự kẻ bảng và làm đi nhé!!^_^
Giải phương trình nghiệm nguyên \(\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)
Giải phương trình : \(\frac{5-x^2}{2012}-1=\frac{4-x^2}{2013}-\frac{x^2-3}{2014}\)
a/ ĐKXĐ: ...
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\Leftrightarrow2x+2y+1=xy\)
\(\Leftrightarrow xy-2x-2y+4=5\)
\(\Leftrightarrow x\left(y-2\right)-2\left(y-2\right)=5\)
\(\Leftrightarrow\left(x-2\right)\left(y-2\right)=5\)
Phần còn lại bạn tự hoàn thành nhé
b/ \(\Leftrightarrow\frac{5-x^2}{2012}+1=\frac{4-x^2}{2013}+1+1-\frac{x^2-3}{2014}\)
\(\Leftrightarrow\frac{2017-x^2}{2012}=\frac{2017-x^2}{2013}+\frac{2017-x^2}{2014}\)
\(\Leftrightarrow\left(2017-x^2\right)\left(\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
\(\Leftrightarrow x^2=2017\)