Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thầy Cao Đô
Xem chi tiết
Nguyễn Huy Tú
10 tháng 4 2021 lúc 14:55

Bài 1 : 

Đặt \(x^2=t\left(t\ge0\right)\)khi đó phương trình tương đương 

\(t+t^2-6=0\)

Ta có : \(\Delta=1+24=25\)

\(t_1=\frac{-1-5}{2}=-3;t_2=\frac{-1+5}{2}=2\)

TH1 : \(x^2=-3\)( vô lí ) 

TH2 : \(x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

Vậy tập nghiệm của phương trình là S = { \(\pm\sqrt{2}\)

Khách vãng lai đã xóa
Nguyễn Thị Phương
5 tháng 5 2021 lúc 20:37

a) \(x^2+x^4-6=0\)

Đặt \(x^2=t\left(t\ge0\right)\)

⇒ t + \(t^2\) - 6 = 0 

⇒ \(t^2+t-6=0\)

⇒ Δ = \(1^2-4.\left(-6\right)\)

        = 25

x1 = \(\dfrac{-1-5}{2}\) = - 3 (L)

x2 = \(\dfrac{-1+5}{2}\) = 2 (TM)

Thay  \(x^2\) = 2 ⇒ x = \(\pm\sqrt{2}\)

Vậy x = \(\left\{\sqrt{2};-\sqrt{2}\right\}\)

b)   (d) : y = 4x +1 - m

      (p) : y = \(x^2\)

Xét phương trình hoành độ giao điểm

\(x^2=4x+1-m\)

⇒ \(x^2-4x+m-1=0\)

Δ' = 4 - m + 1

    = 5 - m

Để (d) cắt (p) tại hai điểm phân biệt thì Δ' > 0

5 - m > 0 

⇒ m < 5

Vậy m < 5 thì (d) cắt (p) tại hai điểm phân biệt

Gọi tọa độ giao điểm của (d) và (p) là (x1;y1) và (x2;y2)

Theo Vi-ét : \(\left\{{}\begin{matrix}S=x_1+x_2=4\\P=x_1x_2=m-1\end{matrix}\right.\)

và y1 = \(x_1^{2_{ }}\) ; y2 = \(x_2^2\)

Khi đó : \(\sqrt{y_1}.\sqrt{y_2}=5\) ⇒ \(\sqrt{y_1.y_2}=5\)

⇔ \(\sqrt{\left(x_1x_2\right)^2}=5\) ⇔ \(|m-1|=5\)

⇔ \(\left[{}\begin{matrix}m-1=5\\m-1=-5\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}m=6\left(L\right)\\m=-4\left(TM\right)\end{matrix}\right.\)   

Vậy m = - 4 thì TMĐKBT

 

Khách vãng lai đã xóa
NGUYỄN HOÀNG VŨ
10 tháng 5 2021 lúc 10:08

a. Giải phương trình x^2 + x^4 - 6 = 0x 

2

 +x 

4

 −6=0.

 

b. Trong mặt phẳng tọa độ OxyOxy cho đường thẳng d:d: y = 4x + 1 - my=4x+1−m và parabol (P):(P): y = x^2y=x 

2

 . Tìm giá trị của mm để dd cắt (P)(P) tại hai điểm phân biệt có tung độ y_1y 

1

​ 

  và y_2y 

2

​ 

  sao cho \sqrt{y_1}.\sqrt{y_2} = 5. 

1

​ 

 

​ 

 . 

2

​ 

 

​ 

 =5.

Hướng dẫn giải:

a. Đặt x^2 = tx 

2

 =t, t \ge 0t≥0 thì phương trình đã cho trở thành:

 

t^2 + t - 6 = 0 \Leftrightarrow t^2 - 2t + 3t - 6 = 0 \Leftrightarrow (t-2)(t+3) = 0t 

2

 +t−6=0⇔t 

2

 −2t+3t−6=0⇔(t−2)(t+3)=0 \Leftrightarrow \left[\begin{aligned} & t = 2 \ \text{(thỏa mãn)} \\ & t = -3 \ \text{(loại)} \\ \end{aligned} \right.⇔[ 

​ 

  

t=2 (thỏa m 

a

˜

 n)

t=−3 (loại)

​ 

 .

 

Với t = 2t=2 thì x^2 = 2 \Leftrightarrow x = \pm \sqrt 2.x 

2

 =2⇔x=± 

2

​ 

 .

Vậy phương trình có nghiệm x = \pm \sqrt2x=± 

2

​ 

 .

 

b. Phương trình hoành độ giao điểm: x^2 = 4x + 1 - mx 

2

 =4x+1−m \Leftrightarrow x^2 - 4x + m -1 = 0⇔x 

2

 −4x+m−1=0 (1)

 

\Delta' = 4 - m + 1 = 5 - mΔ 

 =4−m+1=5−m.

 

Để dd cắt (P)(P) tại hai điểm phân biệt thì phương trình (1) có 2 nghiệm phân biệt

 

\Leftrightarrow \Delta' > 0 \Leftrightarrow m < 5⇔Δ 

 >0⇔m<5.

 

Gọi hai giao điểm của dd và (P)(P) có tọa độ (x_1;y_1)(x 

1

​ 

 ;y 

1

​ 

 ) và (x_2;y_2)(x 

2

​ 

 ;y 

2

​ 

 ).

 

Ta có định lí Vi - et: \left\{\begin{aligned} & x_1 + x_2 = 4\\ & x_1x_2 = m-1 \end{aligned} \right.{ 

​ 

  

1

​ 

 +x 

2

​ 

 =4

1

​ 

 x 

2

​ 

 =m−1

​ 

  và y_1 = x_1^2y 

1

​ 

 =x 

1

2

​ 

 ; y_2 = x_2 ^2y 

2

​ 

 =x 

2

2

​ 

 .

 

Khi đó \sqrt{y_1}.\sqrt{y_2} = 5 \Leftrightarrow \sqrt{y_1.y_2} = 5 

1

​ 

 

​ 

 . 

2

​ 

 

​ 

 =5⇔ 

1

​ 

 .y 

2

​ 

 

​ 

 =5

\Leftrightarrow \sqrt{(x_1x_2)^2} = 5 \Leftrightarrow |m-1| = 5⇔ 

(x 

1

​ 

 x 

2

​ 

 ) 

2

 

​ 

 =5⇔∣m−1∣=5

\Leftrightarrow \left[\begin{aligned} & m - 1 = 5\\ & m - 1 = -5 \end{aligned} \right. \Leftrightarrow \left[\begin{aligned} & m = 6 \ \text{(loại)} \\ & m = -4 \ \text{(thỏa mãn)} \end{aligned} \right.⇔[ 

​ 

  

m−1=5

m−1=−5

​ 

 ⇔[ 

​ 

  

m=6 (loại)

m=−4 (thỏa m 

a

˜

 n)

​ 

 .

 

Vậy với m = -4m=−4 thì dd cắt (P)(P) tại hai điểm phân biệt có tung độ y_1y 

1

​ 

  và y_2y 

2

​ 

  sao cho \sqrt{y_1}.\sqrt{y_2} = 5. 

1

​ 

 

​ 

 . 

2

​ 

 

​ 

 =5.

 

Khách vãng lai đã xóa
Vangull
Xem chi tiết
missing you =
22 tháng 5 2021 lúc 20:13

pt hoành độ giao điểm \(x^2=mx+4< =>x^2-mx-4=0\)

\(\Delta=\left(-m\right)^2-4\left(-4\right)=m^2+16>0\left(\forall m\right)\)

vậy (P) và (d) cắt nhau tại 2 điểm phân biệt có tọa độ (x1;mx1+4), (x2;mx2+4)

theo vi ét => \(\left\{{}\begin{matrix}x1+x2=m\\x1.x2=-4\end{matrix}\right.\)

=>\(\dfrac{1}{y1}+\dfrac{1}{y2}=5< =>\dfrac{y1+y2}{y1.y2}=5\)

\(\dfrac{mx1+4+mx2+4}{\left(mx1+4\right)\left(mx2+4\right)}=\dfrac{m\left(x1+x2\right)+8}{m^2.x1.x2+4mx1+4mx2+16}=5\)

<=>\(\dfrac{m^2+8}{-4.m^2+4m^2+16}=5< =>\dfrac{m^2+8}{16}=5\)

\(=>m^2+8=80< =>m^2=72=>\left[{}\begin{matrix}m=\sqrt{72}=6\sqrt{2}\\m=-\sqrt{72}=-6\sqrt{2}\end{matrix}\right.\)

vậy \(\left[{}\begin{matrix}m=6\sqrt{2}\\m=-6\sqrt{2}\end{matrix}\right.\) thì (P) và (d) cắt nhau tại 2 điểm có tung độ y1,y2 thỏa mãn \(\dfrac{1}{y1}+\dfrac{1}{y2}=5\)

Minhmlem
Xem chi tiết
Kiều Vũ Linh
5 tháng 6 2023 lúc 7:51

b) Phương trình hoành độ giao điểm của (P) và (d):

x² = mx - m + 1

⇔ x² - mx + m - 1 = 0

∆ = m² - 4.1.(m - 1)

= m² - 4m + 4

= (m - 2)² ≥ 0 với mọi m ∈ R

⇒ Phương trình luôn có hai nghiệm

Theo Viét ta có:

x₁ + x₂ = m (1)

x₁x₂ = m - 1 (2)

Lại có x₁ + 3x₂ = 7  (3)

Từ (1) ⇒ x₁ = m - x₂ (4)

Thay x₁ = m - x₂ vào (3) ta được:

m - x₂ + 3x₂ = 7

2x₂ = 7 - m

x₂ = (7 - m)/2

Thay x₂ = (7 - m)/2 vào (4) ta được:

x₁ = m - (7 - m)/2

= (2m - 7 + m)/2

= (3m - 7)/2

Thay x₁ = (3m - 7)/2 và x₂ = (7 - m)/2 vào (2) ta được:

[(3m - 7)/2] . [(7 - m)/2] = m - 1

⇔ 21m - 3m² - 49 + 7m = 4m - 4

⇔ 3m² - 28m + 49 + 4m - 4 = 0

⇔ 3m² - 24m + 45 = 0

∆' = 144 - 3.45 = 9 > 0

Phương trình có hai nghiệm phân biệt:

m₁ = (12 + 3)/3 = 5

m₂ = (12 - 3)/3 = 3

Vậy m = 3; m = 5 thì (P) và (d) cắt nhau tại hai điểm có hoành độ thỏa mãn x₁ + 3x₂ = 7

 

Nguyễn Lê Phước Thịnh
4 tháng 6 2023 lúc 22:09

a: Thay x=0 và y=2 vào (d), ta được:

1-m=2

=>m=-1

nguyễn huy phúc
Xem chi tiết
Nguyễn Thị Thanh Tâm
Xem chi tiết
Minh Nguyen
5 tháng 6 2021 lúc 19:15

Ptrinh hoành độ giao điểm : \(\frac{1}{2}x^2-mx+m-2=0\)

\(\Delta=m^2-4\cdot\frac{1}{2}\cdot\left(m-2\right)=m^2-2m+4>0\)

Theo viet : \(\hept{\begin{cases}x_1+x_2=\frac{m}{\frac{1}{2}}=2m\\x_1.x_2=\frac{m-2}{\frac{1}{2}}=2m-4\end{cases}}\)   

  => \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m\right)^2-2.\left(2m-4\right)=4m^2-4m+8\)

Có : \(y_1+y_2=\frac{1}{2}x_1^2+\frac{1}{2}x_2^2=\frac{1}{2}\left(x_1^2+x_2^2\right)=\frac{1}{2}\left(4m^2-4m+8\right)\)

\(\Rightarrow2m^2-2m+4=8\)

=> \(m^2-m-2=0\)

=> \(\orbr{\begin{cases}m=2\\m=-1\end{cases}}\)

vậy ...

Khách vãng lai đã xóa
Megpoid gumi gumiya
Xem chi tiết
Bùi Thế Hào
6 tháng 12 2017 lúc 14:35

Giao điểm của 2 hàm số là nghiệm của phương trình:

x2=2mx-2m+3 <=> x2-2mx+2m-3=0 (1)

\(\Delta'=m^2-2m+3=m^2-2m+1+2=\left(m-1\right)^2+2\ge2\)Với mọi m

=> Phương trình luôn có 2 nghiệm phân biệt.

Gọi x1 và x2 là 2 nghiệm của phương trình. Ta có: y1=x12 ; y2=x22

=> y1+y2=x12+x22 =(x1+x2)2-2x1.x2

Xét phương trình (1). Theo định lý Vi-et ta có:

x1+x2=-b/a=2m

x1.x2=c/a=2m-3

=> y1+y2=(x1+x2)2-2x1.x2 = (2m)2-2(2m-3)=4m2-4m+6

y1+y2 < 9 <=> 4m2-4m+6 < 9 <=> 4m2-4m-3 < 0

<=> 4m2-4m+1-4<0 <=> (2m-1)2-4 < 0 <=> (2m-1-2)(2m-1+2) < 0

<=> (2m-3)(2m+1) < 0 => -1/2 < m < 3/2

Đáp số: Với -1/2 < m < 3/2 thì giao điểm của 2 đồ thị thỏa mãn điều kiện y1+y2 < 9 

Anh đức
Xem chi tiết
Lizy
Xem chi tiết

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2=2x-m+1\)

=>\(\dfrac{1}{2}x^2-2x+m-1=0\)

\(\Delta=\left(-2\right)^2-4\cdot\dfrac{1}{2}\left(m-1\right)\)

\(=4-2\left(m-1\right)=4-2m+2=-2m+6\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

=>-2m+6>0

=>-2m>-6

=>m<3

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2}{\dfrac{1}{2}}=4\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m-1}{\dfrac{1}{2}}=2\left(m-1\right)\end{matrix}\right.\)

\(x_1x_2\left(y_1+y_2\right)+48=0\)

=>\(\dfrac{1}{2}\left(x_1^2+x_2^2\right)\cdot x_1x_2+48=0\)

=>\(\dfrac{1}{2}\cdot2\cdot\left(m-1\right)\cdot\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)

=>\(\left(m-1\right)\cdot\left[4^2-2\cdot2\left(m-1\right)\right]+48=0\)

=>\(\left(m-1\right)\left(16-4m+4\right)+48=0\)

=>\(\left(m-1\right)\left(-4m+20\right)+48=0\)

=>\(\left(m-1\right)\left(-m+5\right)+12=0\)

=>\(-m^2+5m+m-5+12=0\)

=>\(-m^2+6m+7=0\)

=>\(m^2-6m-7=0\)

=>(m-7)(m+1)=0

=>\(\left[{}\begin{matrix}m=7\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)

Trần Trung Hiếu
Xem chi tiết