Cho (P):y=\(x^2\) ,(d):y=mx+4.Tìm m để (P) và (d) cắt nhau tại 2 điểm phân biệt có tung độ \(y_1;y_2\) thõa mãn:
\(y^2_1+y^2_2=7^2\)
a. Giải phương trình $x^2 + x^4 - 6 = 0$.
b. Trong mặt phẳng tọa độ $Oxy$ cho đường thẳng $d:$ $y = 4x + 1 - m$ và parabol $(P):$ $y = x^2$. Tìm giá trị của $m$ để $d$ cắt $(P)$ tại hai điểm phân biệt có tung độ $y_1$ và $y_2$ sao cho $\sqrt{y_1}.\sqrt{y_2} = 5.$
Bài 1 :
Đặt \(x^2=t\left(t\ge0\right)\)khi đó phương trình tương đương
\(t+t^2-6=0\)
Ta có : \(\Delta=1+24=25\)
\(t_1=\frac{-1-5}{2}=-3;t_2=\frac{-1+5}{2}=2\)
TH1 : \(x^2=-3\)( vô lí )
TH2 : \(x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
Vậy tập nghiệm của phương trình là S = { \(\pm\sqrt{2}\)}
a) \(x^2+x^4-6=0\)
Đặt \(x^2=t\left(t\ge0\right)\)
⇒ t + \(t^2\) - 6 = 0
⇒ \(t^2+t-6=0\)
⇒ Δ = \(1^2-4.\left(-6\right)\)
= 25
x1 = \(\dfrac{-1-5}{2}\) = - 3 (L)
x2 = \(\dfrac{-1+5}{2}\) = 2 (TM)
Thay \(x^2\) = 2 ⇒ x = \(\pm\sqrt{2}\)
Vậy x = \(\left\{\sqrt{2};-\sqrt{2}\right\}\)
b) (d) : y = 4x +1 - m
(p) : y = \(x^2\)
Xét phương trình hoành độ giao điểm
\(x^2=4x+1-m\)
⇒ \(x^2-4x+m-1=0\)
Δ' = 4 - m + 1
= 5 - m
Để (d) cắt (p) tại hai điểm phân biệt thì Δ' > 0
5 - m > 0
⇒ m < 5
Vậy m < 5 thì (d) cắt (p) tại hai điểm phân biệt
Gọi tọa độ giao điểm của (d) và (p) là (x1;y1) và (x2;y2)
Theo Vi-ét : \(\left\{{}\begin{matrix}S=x_1+x_2=4\\P=x_1x_2=m-1\end{matrix}\right.\)
và y1 = \(x_1^{2_{ }}\) ; y2 = \(x_2^2\)
Khi đó : \(\sqrt{y_1}.\sqrt{y_2}=5\) ⇒ \(\sqrt{y_1.y_2}=5\)
⇔ \(\sqrt{\left(x_1x_2\right)^2}=5\) ⇔ \(|m-1|=5\)
⇔ \(\left[{}\begin{matrix}m-1=5\\m-1=-5\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}m=6\left(L\right)\\m=-4\left(TM\right)\end{matrix}\right.\)
Vậy m = - 4 thì TMĐKBT
a. Giải phương trình x^2 + x^4 - 6 = 0x
2
+x
4
−6=0.
b. Trong mặt phẳng tọa độ OxyOxy cho đường thẳng d:d: y = 4x + 1 - my=4x+1−m và parabol (P):(P): y = x^2y=x
2
. Tìm giá trị của mm để dd cắt (P)(P) tại hai điểm phân biệt có tung độ y_1y
1
và y_2y
2
sao cho \sqrt{y_1}.\sqrt{y_2} = 5.
y
1
.
y
2
=5.
Hướng dẫn giải:
a. Đặt x^2 = tx
2
=t, t \ge 0t≥0 thì phương trình đã cho trở thành:
t^2 + t - 6 = 0 \Leftrightarrow t^2 - 2t + 3t - 6 = 0 \Leftrightarrow (t-2)(t+3) = 0t
2
+t−6=0⇔t
2
−2t+3t−6=0⇔(t−2)(t+3)=0 \Leftrightarrow \left[\begin{aligned} & t = 2 \ \text{(thỏa mãn)} \\ & t = -3 \ \text{(loại)} \\ \end{aligned} \right.⇔[
t=2 (thỏa m
a
˜
n)
t=−3 (loại)
.
Với t = 2t=2 thì x^2 = 2 \Leftrightarrow x = \pm \sqrt 2.x
2
=2⇔x=±
2
.
Vậy phương trình có nghiệm x = \pm \sqrt2x=±
2
.
b. Phương trình hoành độ giao điểm: x^2 = 4x + 1 - mx
2
=4x+1−m \Leftrightarrow x^2 - 4x + m -1 = 0⇔x
2
−4x+m−1=0 (1)
\Delta' = 4 - m + 1 = 5 - mΔ
′
=4−m+1=5−m.
Để dd cắt (P)(P) tại hai điểm phân biệt thì phương trình (1) có 2 nghiệm phân biệt
\Leftrightarrow \Delta' > 0 \Leftrightarrow m < 5⇔Δ
′
>0⇔m<5.
Gọi hai giao điểm của dd và (P)(P) có tọa độ (x_1;y_1)(x
1
;y
1
) và (x_2;y_2)(x
2
;y
2
).
Ta có định lí Vi - et: \left\{\begin{aligned} & x_1 + x_2 = 4\\ & x_1x_2 = m-1 \end{aligned} \right.{
x
1
+x
2
=4
x
1
x
2
=m−1
và y_1 = x_1^2y
1
=x
1
2
; y_2 = x_2 ^2y
2
=x
2
2
.
Khi đó \sqrt{y_1}.\sqrt{y_2} = 5 \Leftrightarrow \sqrt{y_1.y_2} = 5
y
1
.
y
2
=5⇔
y
1
.y
2
=5
\Leftrightarrow \sqrt{(x_1x_2)^2} = 5 \Leftrightarrow |m-1| = 5⇔
(x
1
x
2
)
2
=5⇔∣m−1∣=5
\Leftrightarrow \left[\begin{aligned} & m - 1 = 5\\ & m - 1 = -5 \end{aligned} \right. \Leftrightarrow \left[\begin{aligned} & m = 6 \ \text{(loại)} \\ & m = -4 \ \text{(thỏa mãn)} \end{aligned} \right.⇔[
m−1=5
m−1=−5
⇔[
m=6 (loại)
m=−4 (thỏa m
a
˜
n)
.
Vậy với m = -4m=−4 thì dd cắt (P)(P) tại hai điểm phân biệt có tung độ y_1y
1
và y_2y
2
sao cho \sqrt{y_1}.\sqrt{y_2} = 5.
y
1
.
y
2
=5.
Cho hàm số : y=x2
-ĐTHS (d):y= mx + 4. Tìm m sao cho (d) và (P) cắt nhau tại 2 điểm có tung độ
y1,y2 thỏa mãn \(\dfrac{1}{y_1}+\dfrac{1}{y_2}=5\)
pt hoành độ giao điểm \(x^2=mx+4< =>x^2-mx-4=0\)
\(\Delta=\left(-m\right)^2-4\left(-4\right)=m^2+16>0\left(\forall m\right)\)
vậy (P) và (d) cắt nhau tại 2 điểm phân biệt có tọa độ (x1;mx1+4), (x2;mx2+4)
theo vi ét => \(\left\{{}\begin{matrix}x1+x2=m\\x1.x2=-4\end{matrix}\right.\)
=>\(\dfrac{1}{y1}+\dfrac{1}{y2}=5< =>\dfrac{y1+y2}{y1.y2}=5\)
\(\dfrac{mx1+4+mx2+4}{\left(mx1+4\right)\left(mx2+4\right)}=\dfrac{m\left(x1+x2\right)+8}{m^2.x1.x2+4mx1+4mx2+16}=5\)
<=>\(\dfrac{m^2+8}{-4.m^2+4m^2+16}=5< =>\dfrac{m^2+8}{16}=5\)
\(=>m^2+8=80< =>m^2=72=>\left[{}\begin{matrix}m=\sqrt{72}=6\sqrt{2}\\m=-\sqrt{72}=-6\sqrt{2}\end{matrix}\right.\)
vậy \(\left[{}\begin{matrix}m=6\sqrt{2}\\m=-6\sqrt{2}\end{matrix}\right.\) thì (P) và (d) cắt nhau tại 2 điểm có tung độ y1,y2 thỏa mãn \(\dfrac{1}{y1}+\dfrac{1}{y2}=5\)
Trên mặt phẳng toạ độ Oxy, cho đường thẳng (d) : y = mx - m +1 và parabol (P) : y = x^2
a, Tìm m để (d) cắt trục tung tại điểm có tung độ bằng 2
b, Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 , x2 thoả mãn x1 + 3x2 = 7
b) Phương trình hoành độ giao điểm của (P) và (d):
x² = mx - m + 1
⇔ x² - mx + m - 1 = 0
∆ = m² - 4.1.(m - 1)
= m² - 4m + 4
= (m - 2)² ≥ 0 với mọi m ∈ R
⇒ Phương trình luôn có hai nghiệm
Theo Viét ta có:
x₁ + x₂ = m (1)
x₁x₂ = m - 1 (2)
Lại có x₁ + 3x₂ = 7 (3)
Từ (1) ⇒ x₁ = m - x₂ (4)
Thay x₁ = m - x₂ vào (3) ta được:
m - x₂ + 3x₂ = 7
2x₂ = 7 - m
x₂ = (7 - m)/2
Thay x₂ = (7 - m)/2 vào (4) ta được:
x₁ = m - (7 - m)/2
= (2m - 7 + m)/2
= (3m - 7)/2
Thay x₁ = (3m - 7)/2 và x₂ = (7 - m)/2 vào (2) ta được:
[(3m - 7)/2] . [(7 - m)/2] = m - 1
⇔ 21m - 3m² - 49 + 7m = 4m - 4
⇔ 3m² - 28m + 49 + 4m - 4 = 0
⇔ 3m² - 24m + 45 = 0
∆' = 144 - 3.45 = 9 > 0
Phương trình có hai nghiệm phân biệt:
m₁ = (12 + 3)/3 = 5
m₂ = (12 - 3)/3 = 3
Vậy m = 3; m = 5 thì (P) và (d) cắt nhau tại hai điểm có hoành độ thỏa mãn x₁ + 3x₂ = 7
a: Thay x=0 và y=2 vào (d), ta được:
1-m=2
=>m=-1
cho (d) y=mx-m+2 tìm m để (d) cắt (p) y=1/2 x^2 tại 2 điểm phân biệt a, b có tung độ lần lượt y1^2+y2^2=2p
Cho đường thẳng (d): \(y=mx-m+2\) (m là tham số)
Tìm m để đường thẳng (d) và Parabol (P): \(y=\frac{1}{2}x^2\) cắt nhau tại hai điểm phân việt A,B có tung độ lần lượt là \(y_1;y_2\) sao cho: \(y_1+y_2=8\)
Ptrinh hoành độ giao điểm : \(\frac{1}{2}x^2-mx+m-2=0\)
\(\Delta=m^2-4\cdot\frac{1}{2}\cdot\left(m-2\right)=m^2-2m+4>0\)
Theo viet : \(\hept{\begin{cases}x_1+x_2=\frac{m}{\frac{1}{2}}=2m\\x_1.x_2=\frac{m-2}{\frac{1}{2}}=2m-4\end{cases}}\)
=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m\right)^2-2.\left(2m-4\right)=4m^2-4m+8\)
Có : \(y_1+y_2=\frac{1}{2}x_1^2+\frac{1}{2}x_2^2=\frac{1}{2}\left(x_1^2+x_2^2\right)=\frac{1}{2}\left(4m^2-4m+8\right)\)
\(\Rightarrow2m^2-2m+4=8\)
=> \(m^2-m-2=0\)
=> \(\orbr{\begin{cases}m=2\\m=-1\end{cases}}\)
vậy ...
trong mặt phăng xoy cho \(y=x^2\left(P\right)\) và \(y=2mx-2m+3\left(d\right)\).CMR: (d) và (P) cắt nhau tại 2 điểm phân biệt. Gọi \(y_1,y_2\)là các tung độ giao điểm của (P) và (d).Tìm m để \(y_1+y_2< 9\)
Giao điểm của 2 hàm số là nghiệm của phương trình:
x2=2mx-2m+3 <=> x2-2mx+2m-3=0 (1)
\(\Delta'=m^2-2m+3=m^2-2m+1+2=\left(m-1\right)^2+2\ge2\)Với mọi m
=> Phương trình luôn có 2 nghiệm phân biệt.
Gọi x1 và x2 là 2 nghiệm của phương trình. Ta có: y1=x12 ; y2=x22
=> y1+y2=x12+x22 =(x1+x2)2-2x1.x2
Xét phương trình (1). Theo định lý Vi-et ta có:
x1+x2=-b/a=2m
x1.x2=c/a=2m-3
=> y1+y2=(x1+x2)2-2x1.x2 = (2m)2-2(2m-3)=4m2-4m+6
y1+y2 < 9 <=> 4m2-4m+6 < 9 <=> 4m2-4m-3 < 0
<=> 4m2-4m+1-4<0 <=> (2m-1)2-4 < 0 <=> (2m-1-2)(2m-1+2) < 0
<=> (2m-3)(2m+1) < 0 => -1/2 < m < 3/2
Đáp số: Với -1/2 < m < 3/2 thì giao điểm của 2 đồ thị thỏa mãn điều kiện y1+y2 < 9
Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) : y = mx - m + 1 và parapol y = x2.
Tìm m để (d) cắt (p) tại hai điểm phân biệt có tung độ bằng 4
Xin giải giúp mình câu này nhanh nhá
trong mặt phẳng tọa độ Oxy
(d):y=2x-m+1 và parabol (P):y=`1/2 x^2`
Tìm m để (d) cắt (P) tại 2 điểm phân biệt có tọa độ \(\left(x_1;y_1\right),\left(x_2;y_2\right)\) sao cho \(x_1x_2\left(y_1+y_2\right)+48=0\)
Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2=2x-m+1\)
=>\(\dfrac{1}{2}x^2-2x+m-1=0\)
\(\Delta=\left(-2\right)^2-4\cdot\dfrac{1}{2}\left(m-1\right)\)
\(=4-2\left(m-1\right)=4-2m+2=-2m+6\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
=>-2m+6>0
=>-2m>-6
=>m<3
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2}{\dfrac{1}{2}}=4\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m-1}{\dfrac{1}{2}}=2\left(m-1\right)\end{matrix}\right.\)
\(x_1x_2\left(y_1+y_2\right)+48=0\)
=>\(\dfrac{1}{2}\left(x_1^2+x_2^2\right)\cdot x_1x_2+48=0\)
=>\(\dfrac{1}{2}\cdot2\cdot\left(m-1\right)\cdot\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)
=>\(\left(m-1\right)\cdot\left[4^2-2\cdot2\left(m-1\right)\right]+48=0\)
=>\(\left(m-1\right)\left(16-4m+4\right)+48=0\)
=>\(\left(m-1\right)\left(-4m+20\right)+48=0\)
=>\(\left(m-1\right)\left(-m+5\right)+12=0\)
=>\(-m^2+5m+m-5+12=0\)
=>\(-m^2+6m+7=0\)
=>\(m^2-6m-7=0\)
=>(m-7)(m+1)=0
=>\(\left[{}\begin{matrix}m=7\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)
Cho hàm số (P) y = x2 và đường thẳng (d) : y = mx + m + 1
a) Tìm m để (d) cắt (P) tại 2 điểm phân biệt thỏa mãn |x1 – x2| = 2.
b) Tìm m để (d) cắt (P) tại 2 điểm phân biệt sao cho các tung độ của hai giao điểm bằng 5.
c) Tìm m để (d) cắt (P) tại 2 điểm phân biệt nằm về hai phía của trục tung.
d) Tìm m để (d) đi qua điểm M nằm trên (P). Biết điểm M có hoành độ bằng – 2 .
e) Gọi x1 , x2 là hoành độ giao điểm của (P) và (d). Tìm m để x12 + mx2 – m2 – 2016<0.