Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tran chi hoa
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Nguyễn Yến Nhi
26 tháng 12 2016 lúc 10:24

=\(\left(\frac{1}{x\left(x-y\right)}-\frac{3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right)\)\(\left(\frac{y\left(x+y\right)+x^2}{x+y}\right)\)

=\(\left(\frac{x^2+xy+y^2-3y^2-y\left(x-y\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right)\) \(\left(\frac{x^2+xy+y^2}{x+y}\right)\)

=\(\left(\frac{x^2+xy-2y^2-xy+y^2}{x\left(x-y\right)}\right)\left(\frac{1}{x+y}\right)\)

=\(\frac{x^2-y^2}{x\left(x-y\right)\left(x+y\right)}\)=\(\frac{\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}\) =\(\frac{1}{x}\)

Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Nguyễn Huyền Trang
Xem chi tiết
Phùng Gia Bảo
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Trần Việt Linh
3 tháng 8 2016 lúc 7:39

\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\left(ĐK:x\ne0;y\ne0\right)\)

\(=\frac{2}{xy}:\left(\frac{y-x}{xy}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}\cdot\frac{x^2y^2}{\left(y-x\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{-2xy}{\left(x-y\right)^2}+\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{-2xy+x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{\left(x-y\right)^2}{\left(x-y\right)^2}=1\)

 

Đặng Minh Triều
3 tháng 8 2016 lúc 7:32

\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\left(dk:x\ne y\ne0\right)\)

miik ko nghĩ nó là toán lớp 7 đâu bn

Vũ Nguyễn Phương Thảo
Xem chi tiết
Nguyễn Phương Uyên
11 tháng 3 2020 lúc 7:48

\(a,ĐKXĐ:x\ne-;y\ne0\)

\(P=\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)

\(P=\frac{2}{x}-\left(\frac{x^2}{x\left(x+y\right)}+\frac{y^2-x^2}{xy}-\frac{y^2}{y\left(x+y\right)}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)

\(P=\frac{2}{x}-\left(\frac{x^2y}{xy\left(x+y\right)}+\frac{\left(x+y\right)\left(y^2-x^2\right)}{xy\left(x+y\right)}-\frac{xy^2}{xy\left(x+y\right)}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)

\(P=\frac{2}{x}-\left(\frac{x^2y+xy^2-x^3+y^3-x^2y-xy^2}{xy\left(x+y\right)}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)

\(P=\frac{2}{x}+\frac{x^3-y^3}{xy\left(x+y\right)}\cdot\frac{x+y}{x^2+xy+y^2}\)

\(P=\frac{2}{x}-\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy}\cdot\frac{1}{x^2+xy+y^2}\)

\(P=\frac{2}{x}-\frac{x-y}{xy}=\frac{2y-x+y}{xy}=\frac{3y-x}{xy}\)

\(b,x^2+y^2+10=2\left(x-3y\right)\)

\(\Leftrightarrow x^2+y^2+10=2x-6y\)

\(\Leftrightarrow x^2-2x+1+y^2+6y+9=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

thay vào P được : \(P=\frac{3\left(-3\right)-1}{-3\cdot1}=\frac{-10}{-3}=\frac{10}{3}\)

Khách vãng lai đã xóa
Vũ Nguyễn Phương Thảo
10 tháng 3 2020 lúc 21:41

a, Rút gọn A

b,Tìm giá trị P, biết x,y thỏa mãn đẳng thức

x^2+y^2+10=2(x-3y)

Khách vãng lai đã xóa
Nguyễn Hoàng Tiến
Xem chi tiết
Phạm Hữu Nam chuyên Đại...
26 tháng 8 2016 lúc 16:31

chắc =1 đó chỉ cần đọc kĩ đề thôi