Thực hiện phép tính: (tính hợp lý)
𝑎) (2𝑥−1)(2𝑥+1)(2𝑥−5) ;
𝑏) (𝑥2+𝑥−3)(𝑥2−𝑥+3)
* Gợi ý: Dùng những hằng đẳng thức đáng nhớ để biến đổi.
𝑎)2𝑥−1𝑥−3+4=−1𝑥−3
⇔2x-1x+1x=-3+3-4
⇔2x=-4
⇔x=-2
𝑏)3𝑥−22𝑥+5=6𝑥+14𝑥−3
⇔5+3=6x+14x-3x+22x
⇔8=39x
⇔x=\(\frac{8}{39}\)
𝑐)𝑥+3𝑥+1+𝑥−2𝑥=2
⇔x+3x+x-2x=2-1
⇔3x=1
⇔x=\(\frac{1}{3}\)
𝑑)x+1−2𝑥−3𝑥−1=2𝑥+3𝑥2−1
⇔3x2+2x+2x+3x-x-1-1+1=0
⇔3x2+6x-1=0
⇔3x2+3x+3x+3-4=0
⇔3x(x+1)+3(x+1)-4=0
⇔3(x+1)(x+1)-4=0
⇔3(x+1)2-4=0
⇔(x+1)2=\(\frac{4}{3}\)
⇔\(\left[{}\begin{matrix}x+1=\frac{4}{3}\\x+1=-\frac{4}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}-1\\x=-\frac{4}{3}-1\end{matrix}\right.\)
Vậy ...
a, 2x - x - 3 + 4 = -x - 3
\(\Leftrightarrow\) x + 1 = -x - 3
\(\Leftrightarrow\) x + x = -3 - 1
\(\Leftrightarrow\) 2x = -4
\(\Leftrightarrow\) x = -2
Vậy S = {-2}
b, 3x - 22x + 5 = 6x + 14x - 3
\(\Leftrightarrow\) -19x + 5 = 20x - 3
\(\Leftrightarrow\) -19x - 20x = -3 - 5
\(\Leftrightarrow\) -39x = -8
\(\Leftrightarrow\) x = \(\frac{8}{39}\)
Vậy S = {\(\frac{8}{39}\)}
c, x + 3x + 1 + x - 2x = 2
\(\Leftrightarrow\) 3x + 1 = 2
\(\Leftrightarrow\) 3x = 2 - 1
\(\Leftrightarrow\) 3x = 1
\(\Leftrightarrow\) x = \(\frac{1}{3}\)
Vậy S = {\(\frac{1}{3}\)}
Phần d mình ko hiểu, bạn viết rõ được ko!
Chúc bn học tốt!!
d, x + 1 - 2x - 3x - 1 = 2x + 3x2 - 1
\(\Leftrightarrow\) x + 1 - 2x - 3x - 1 - 2x - 3x2 + 1 = 0
\(\Leftrightarrow\) -3x2 - 6x + 1 = 0
\(\Leftrightarrow\) -(3x2 + 6x - 1) = 0
\(\Leftrightarrow\) 3x2 + 6x - 1 = 0
\(\Leftrightarrow\) 3x2 + 3x + 3x + 3 - 4 = 0
\(\Leftrightarrow\) 3x(x + 1) + 3(x + 1) - 4 = 0
\(\Leftrightarrow\) 3(x + 1)(x + 1) - 4 = 0
\(\Leftrightarrow\) 3(x + 1)2 - 4 = 0
\(\Leftrightarrow\) (x + 1)2 = \(\frac{4}{3}\)
\(\Leftrightarrow\) x + 1 = \(\sqrt{\frac{4}{3}}\) hoặc x + 1 = \(-\sqrt{\frac{4}{3}}\)
\(\Leftrightarrow\) x = \(\sqrt{\frac{4}{3}}\) - 1 và x = \(-\sqrt{\frac{4}{3}}\) - 1
\(\Leftrightarrow\) x = \(\frac{2\sqrt{3}-3}{3}\) và x = \(\frac{-2\sqrt{3}-3}{3}\)
Vậy S = {\(\frac{2\sqrt{3}-3}{3}\); \(\frac{-2\sqrt{3}-3}{3}\)}
Chúc bn học tốt!!
1) Làm tính nhân
a) 𝑥. (𝑥2 – 5) | b) 3𝑥𝑦(𝑥2 − 2𝑥2𝑦 + 3) |
c) (2𝑥 − 6)(3𝑥 + 6) 2) Tính (áp dụng Hằng đẳng thức) | d) (𝑥 + 3𝑦)(𝑥2 − 𝑥𝑦) |
a) (2𝑥 + 5)(2𝑥 − 5)
| b) (𝑥 − 3)2 c) (4 + 3𝑥)2 |
d) (𝑥 − 2𝑦)3 | e) (5𝑥 + 3𝑦)3 |
f) (5 − 𝑥)(25 + 5𝑥 + 𝑥2) | g) (2𝑦 + 𝑥)(4𝑦2 − 2𝑥𝑦 + 𝑥2) |
3) Phân tích các đa thức sau thành nhân tử
a) 𝑥2 + 2𝑥 | b) 𝑥2 − 6𝑥 + 9 |
c) 5(𝑥 – 𝑦) – 𝑦(𝑦 – 𝑥) | d) 2𝑥 − 𝑦2 + 2𝑥𝑦 − 𝑦 |
a) 6𝑥3𝑦4 + 12𝑥2𝑦3 − 18𝑥3𝑦2 | b) 𝑥2 − 2𝑥𝑦 + 𝑦2 − 36 |
c) 5𝑥2 + 3𝑥 − 5𝑥𝑦 − 3𝑦 | d) 𝑥2 − 5𝑥 − 6 |
e) 𝑥3 − 3𝑥2 − 4𝑥 + 12 4) Rút gọn biểu thức | f) 𝑥3 + 27 + (𝑥 + 3)(𝑥 − 9) |
a) (𝑥2 + 1)(𝑥 − 3) − (𝑥 − 3)(𝑥2 + 3𝑥 + 9)
b) (𝑥 + 2)2 + 𝑥(𝑥 + 5)
c) (5𝑥 + 4𝑦)(5𝑥 − 4𝑦) − 24𝑥2 + 15𝑦2 5) Tìm x, biết:
a) 2𝑥(𝑥2 − 9) = 0 b) 2𝑥(𝑥 − 2021) − 𝑥 + 2021 = 0
c) 4𝑥2 − 16𝑥 = 0 d) (3𝑥 + 7)2 − (𝑥 + 1)2 = 0
6) Làm tính chia
a) 14𝑥3𝑦 ∶ 10𝑥2 b) (𝑥3 − 27) ∶ (3 − 𝑥)
c) 8𝑥3𝑦3𝑧 ∶ 6𝑥𝑦3 d) (𝑥2 − 9𝑦2 + 4𝑥 + 4) ∶ (𝑥 + 3𝑦 + 2)
7) a) Tìm giá trị nhỏ nhất của biểu thức: 𝐴 = (𝑥 − 1)(𝑥 − 3) + 11
b) Tìm giá trị lớn nhất của biểu thức: 𝐵 = 5 − 4𝑥2 + 4𝑥
c) Cho 𝑥 – 𝑦 = 2. Tìm giá trị lớn nhất của đa thức 𝐵 = 𝑦2 − 3𝑥2
8) Tìm số để đa thức 𝑥3 − 3𝑥2 + 5𝑥 + 𝑎 chia hết cho đa thức 𝑥 − 2 9) Áp dụng kết quả bài tập 31 – SGK – tr.16, hãy:
a) Tính 𝑎3 − 𝑏3 biết 𝑎. 𝑏 = 8 và 𝑎 − 𝑏 = −6
b) Tính 𝑎3 + 𝑏3 biết 𝑎. 𝑏 = −12 và 𝑎 + 𝑏 = 1
c) Tính 𝑎3 + 𝑏3 biết 𝑎2 + 𝑏2 = 30 và 𝑎 + 𝑏 = 2
5) a) 2x(x^2 - 9) = 0
<=> 2x(x - 3)(x + 3) = 0
<=> x = 0 hoặc x = 3 hoặc x = -3
b) 2x(x - 2021) - x + 2021 = 0
<=> (2x - 1)(x - 2021) = 0
<=> 2x - 1 = 0 hoặc x - 2021 = 0
<=> x = 1/2 hoặc x = 2021
c) 4x^2 - 16x = 0
<=> 4x(x - 4) = 0
<=> x = 0 hoặc x = 4
d) (3x + 7)^2 - (x + 1)^2 = 0
<=> (3x + 7 + x + 1)(3x + 7 - x - 1) = 0
<=> (4x + 8)(2x + 6) = 0
<=> 4x + 8 = 0 hoặc 2x + 6 = 0
<=> x = -2 hoặc x = -3
Thực hiện phép chia đa thức 𝑥4+3𝑥2−2𝑥+2021 cho đa thức x2 – x + 1;
\(=\left(x^4-x^3+x^2+x^3-x^2+x+3x^2-3x+3+2018\right):\left(x^2-x+1\right)\\ =\left[\left(x^2-x+1\right)\left(x^2+x+3\right)+2018\right]:\left(x^2-x+1\right)\\ =x^2+x+3\left(\text{dư 2018}\right)\)
1) Làm tính nhân
a) 𝑥.(𝑥^2–5)
b) 3𝑥𝑦(𝑥^2−2𝑥^2𝑦+3)
c) (2𝑥−6)(3𝑥+6)
d) (𝑥+3𝑦)(𝑥^2−𝑥𝑦)
2)Tính (áp dụng Hằng đẳng thức)
a) (2𝑥+5)(2𝑥−5)
b) (𝑥−3)^2
c) (4+3𝑥)^2
d) (𝑥−2𝑦)^3
e) (5𝑥+3𝑦)^3
f) (5−𝑥)(25+5𝑥+𝑥^2)
g) (2𝑦+𝑥)(4𝑦^2−2𝑥𝑦+𝑥^2)
3)Phân tích các đa thức sau thành nhân tử
a) 𝑥^2+2𝑥
b) 𝑥^2−6𝑥+9
c) 5(𝑥–𝑦)–𝑦(𝑦–𝑥)
d) 2𝑥−𝑦^2+2𝑥𝑦−𝑦
a) 6𝑥^3𝑦^4+12𝑥^2𝑦^3−18𝑥^3𝑦^2
Bài 1:
a. $x(x^2-5)=x^3-5x$
b. $3xy(x^2-2x^2y+3)=3x^3y-6x^3y^2+9xy$
c. $(2x-6)(3x+6)=6x^2+12x-18x-36=6x^2-6x-36$
d.
$(x+3y)(x^2-xy)=x^3-x^2y+3x^2y-3xy^2=x^3+2x^2y-3xy^2$
Bài 2:
a.
\((2x+5)(2x-5)=(2x)^2-5^2=4x^2-25\)
b.
\((x-3)^2=x^2-6x+9\)
c.
\((4+3x)^2=9x^2+24x+16\)
d.
\((x-2y)^3=x^3-6x^2y+12xy^2-8y^3\)
e.
\((5x+3y)^3=(5x)^3+3.(5x)^2.3y+3.5x(3y)^2+(3y)^3\)
\(=125x^3+225x^2y+135xy^2+27y^3\)
f.
\((5-x)(25+5x+x^2)=5^3-x^3=125-x^3\)
Bài 3:
a. $x^2+2x=x(x+2)$
b. $x^2-6x+9=x^2-2.3x+3^2=(x-3)^2$
c. $5(x-y)-y(y-x)=5(x-y)+y(x-y)=(x-y)(5+y)$
d. $2x-y^2+2xy-y=(2x-y)+(2xy-y^2)=(2x-y)-y(2x-y)=(2x-y)(1-y)$
e.
$6x^3y^4+12x^2y^3-18x^3y^2=6x^2y^2(xy^2+2y-3x)$
1) Làm tính nhân
a) 𝑥.(𝑥2–5)
b) 3𝑥𝑦(𝑥2−2𝑥2𝑦+3)
c) (2𝑥−6)(3𝑥+6)
d) (𝑥+3𝑦)(𝑥2−𝑥𝑦)
2)Tính (áp dụng Hằng đẳng thức)
a) (2𝑥+5)(2𝑥−5)
b) (𝑥−3)^2
c) (4+3𝑥)^2
d) (𝑥−2𝑦)^3
e) (5𝑥+3𝑦)^3
f) (5−𝑥)(25+5𝑥+𝑥^2)
g) (2𝑦+𝑥)(4𝑦^2−2𝑥𝑦+𝑥^2)
3)Phân tích các đa thức sau thành nhân tử
a) 𝑥^2+2𝑥
b) 𝑥^2−6𝑥+9
c) 5(𝑥–𝑦)–𝑦(𝑦–𝑥)
d) 2𝑥−𝑦^2+2𝑥𝑦−𝑦
a) 6𝑥^3𝑦^4+12𝑥^2𝑦^3−18𝑥^3𝑦^2
\(1,\\ a,=x^3-5x\\ b,=3x^3y-6x^3y^2+9xy\\ c,=6x^2-6x-36\\ d,=x^3+2x^2y-3xy^2\\ 2,\\ a,=4x^2-25\\ b,=x^2-6x+9\\ c,=9x^2+24x+16\\ d,=x^3-6x^2y+12xy^2-8y^3\\ e,=125x^3+225x^2y+135xy^2+27y^3\\ f,=125-x^3\)
\(g,=8y^3+x^3\\ 3,\\ a,=x\left(x+2\right)\\ b,=\left(x-3\right)^2\\ c,=\left(x-y\right)\left(y+5\right)\\ d,=2x\left(y+1\right)-y\left(y+1\right)=\left(2x-y\right)\left(y+1\right)\\ e,=6x^2y^2\left(xy^2+2y-3x\right)\)
Bài 1: Tìm a sao cho
1. 2𝑥²− 5x + a chia hết cho 2x + 1
2. 𝑥⁴− 9𝑥³+ 21x²+ 𝑥 + 𝑎 chia hết cho x² − 𝑥 − 2
1) \(2x^2-5x+a=x\left(2x+1\right)-3\left(2x+1\right)+3+a=\left(2x+1\right)\left(x-3\right)+3+a⋮\left(2x+1\right)\)
\(\Rightarrow3+a=0\Rightarrow a=-3\)
2) \(x^4-9x^3+21x^2+x+a=x^2\left(x^2-x-2\right)-8x\left(x^2-x-2\right)+15\left(x^2-x-2\right)+30+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+30+a⋮\left(x^2-x-2\right)\)
\(\Rightarrow30+a=0\Rightarrow a=-30\)
𝑥(2𝑥 − 1) − 2𝑥(𝑥 + 3) = 8
\(\Leftrightarrow2x^2-x-2x^2-6x=8\\ \Leftrightarrow-7x=8\Leftrightarrow x=-\dfrac{8}{7}\)
`x(2x-1)-2x(x+3)=8`
`=>3x^2-x-2x^2-6x=8`
`=>-7x=8`
`=>x=8:(-7)`
`=>x=-8/7`
√2𝑥+1−√𝑥+3+√2𝑥−1−√𝑥−1=0