2017^10 +1 / 2017^9 +1 và 2017^11 +1 / 2017^10+1
Tính nhanh
( 9/2010 + 10/2009 + 11/2008 - 1/2018 - 1/2017) ÷ ( 1/2019 + 1/2018 + 1/2017 - 1/2010 - 1/2009 - 1/2008)
So sánh \(A=\frac{10^{2016}-1}{10^{2017}-11}\) và \(B=\frac{10^{2016}+1}{10^{2017}+9}\)
Ta có : \(A=\frac{10^{2016}-1}{10^{2017}-11}\)
\(\Leftrightarrow10.A=\frac{10.\left(10^{2016}-1\right)}{10^{2017}-11}=\frac{10^{2017}-10}{10^{2017}-11}\)
\(=\frac{10^{2017}-11+1}{10^{2017}-11}=1+\frac{1}{10^{2017}-11}\)
Lại có : \(B=\frac{10^{2016}+1}{10^{2017}+9}\)
\(\Leftrightarrow10.B=\frac{10\left(10^{2016}+1\right)}{10^{2017}+9}=\frac{10^{2017}+10}{10^{2017}+9}\)
\(=\frac{10^{2017}+9+1}{10^{2017}+9}=1+\frac{1}{10^{2017}+9}\)
Do : \(10^{2017}-11< 10^{2017}+9\) \(\Rightarrow\frac{1}{10^{2017}-11}>\frac{1}{10^{2017}+9}\)
\(\Rightarrow1+\frac{1}{10^{2017}-11}>1+\frac{1}{10^{2017}+9}\)
hay \(A>B\)
Vậy : \(A>B\)
\(Sosánh\)
\(\frac{2017^{10}+1}{2017^{10}-1}\) và \(\frac{2017^{10-1}}{2017^{10-3}}\)
Ta có:
\(\frac{2017^{10}+1}{2017^{10}-1}=1+\frac{2}{2017^{10}-1}\)
Lại có:
\(\frac{2017^{10}-1}{2017^{10}-3}=1+\frac{2}{2017^{10}-3}\)
Vì \(1+\frac{2}{2017^{10}-1}< 1+\frac{2}{2017^{10}-3}\)
Nên \(\frac{2017^{10}+1}{2017^{10}-1}< \frac{2017^{10}-1}{2017^{10}-3}\)
Vậy \(\frac{2017^{10}+1}{2017^{10}-1}< \frac{2017^{10}-1}{2017^{10}-3}\)
Ta có
\(\frac{2017^{10}+1}{2017^{10}-1}=\frac{2017^{10}-1+2}{2017^{10}-1}=1+\frac{2}{2017^{10}-1}\)
\(\frac{2017^{10}-1}{2017^{10}-3}=\frac{2017^{10}-3+2}{2017^{10}-3}=1+\frac{2}{2017^{10}-3}\)
\(\Rightarrow1+\frac{2}{2017^{10}-1}< 1+\frac{2}{2017^{10}-1}\)
\(\Rightarrow\frac{2017^{10}+1}{2017^{10}-1}< \frac{2017^{10}-1}{2017^{10}-3}\)
Ta có : \(A=\frac{20^{10}+1}{20^{10}-1}=\frac{\left(20^{10}-1\right)+2}{20^{10}-1}=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{\left(20^{10}-3\right)+2}{20^{10}-3}=\frac{20^{10}-3}{20^{10}-3}+\frac{2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Do \(20^{10}-1>20^{10}-3\)
\(\Rightarrow\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)
Hay : \(A< B\)
so sánh a và b biết a=2016/2017+2017/2018+2018/2019+2019/2016 và b=1/8+1/9+1/10+...+1/63
tính bằng cách hợp lý (-2017)+(-21+75+2017) ; 1152-(374+1152)+(-65+374) ; 13-12+11+10-9+8-7-6+5-4+3+2-1
So sánh
A = \(\frac{10^{2017}-2}{10^{2017}+1}\) và B = \(\frac{10^{2017}}{10^{2017}+3}\)
Có \(A=\frac{10^{2017}+1-3}{10^{2017}+1}=1-\frac{3}{10^{2017}+1}\)
\(B=\frac{10^{2017}+3-3}{10^{2017}+3}=1-\frac{3}{10^{2017}+3}\)
Có 102017+1<102017+3
=> \(\frac{3}{10^{2017}+1}>\frac{3}{10^{2017}+3}\)
=>A<B
Bài 1: Tính
A = ( 210 - 1 ) . ( 210 - 2 ) . ( 210 - 3 ) . ... . ( 210 - 2017 )
Bài 2: So sánh
a) 6315 và 3418 b) 20172018 - 20172017 và 20172019 và 20172018
Nhanh nha chiều mai mình cần
so sánh A = 10 mũ 2017 + 1 / 10 mũ 2018 + 1 và B = 10 mũ 2016 +1 /10 mũ 2017
A =\(\dfrac{10^{2017}-2}{10^{2017}+1}\) và B = \(\dfrac{10^{2017}}{10^{2017}+3}\)
Vì \(A=\dfrac{10^{2017}-2}{10^{2017}+1}< 1\)
\(\Rightarrow B=\dfrac{10^{2017}-2}{10^{2017}+1}< \dfrac{10^{2017}-2+2}{10^{2017}+1+2}=\dfrac{10^{2017}}{10^{2017}+3}=A\)
Vậy A > B
Vì \(A< 1\)
\(\Rightarrow A< \dfrac{10^{2017}-2+2}{10^{2017}+1+2}=\dfrac{10^{2017}}{10^{2017}+3}=B\)
Vậy A < B