phân tích thành nhân tử: x3 -3x2 + 3x - 1
1 a. phân tích đa thức -x3 + 3x2 - 3x + 1 thành nhân tử
b. phân tích đa thức 1 - 3x + 3x2 - x3 thành nhân tử
1a) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
b) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
\(a,=-\left(x-1\right)^3\left[=\left(1-x\right)^3\right]\\ b,=\left(1-x\right)^3\)
a. \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
b. \(=\left(1-x\right)^3\)
Phân tích đa thức thành nhân tử :
x3 -3x2 +3x -1 -y3
x3+3x2 +3x +1 -y3
Bạn phải vt thêm dấu mũ vào mới giải đc chứ!! Để thế kia ai mà giải đc
\(x^3-3x^2+3x-1-y^3\\ =\left(x-1\right)^3-y^3=\left(x-1-y\right)\left[\left(x-1\right)^2+y\left(x-1\right)+y^2\right]\\ =\left(x-y-1\right)\left(x^2-2x+1+xy-y+y^2\right)\)
\(x^3+3x^2+3x+1-y^3\\ =\left(x+1\right)^3-y^3=\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2\right]\\ =\left(x-y+1\right)\left(x^2+2x+1+xy+y+y^2\right)\)
a) x3-3x2+3x-1-y3 =(x-1)3 - y3
= (x-1)3 - 3.(x-1)2.y + 3.(x-1). y2 - y
phân tích đa thức -x3 + 3x2 - 3x + 1 thành nhân tử
\(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
Phân tích đa thức sau thành nhân tử: x3 + 3x2 + 3x + 1
x3 + 3x2 + 3x + 1 = x3 + 3x2.1 + 3x.12 + 13 = (x + 1)3
Phân tích các đa thức sau thành nhân tử:
d ) x 3 + 3 x 2 – 3 x – 1
d) x3 + 3x2 – 3x – 1
= (x3 - 1) + (3x2 - 3x)
= (x - 1)(x2 + x + z) + 3x(x - 1)
= (x - 1)(x2 + 4x + 1)
Phân tích vế trái thành nhân tử, giải phương trình sau: x3 – 3x2 + 3x – 1 = 0
x3 – 3x2 + 3x - 1 = 0
⇔ (x – 1)3 = 0 (Hằng đẳng thức)
⇔ x – 1 = 0
⇔ x = 1.
Vậy tập nghiệm của phương trình là S={1}.
Phân tích các đa thức sau thành nhân tử:
a ) x 3 + 3 x 2 – 3 x – 9
a) x3 + 3x2 – 3x – 9
= (x3 + 3x2) - (3x + 9)
= x2(x + 3) - 3(x + 3)
= (x + 3)(x2 - 3)
= (x + 3)(x + √3)(x - √3)
phân tích các đa thức sau thành nhân tử:
a, A= x2 - 6x + 9 - 9y2
b, B= x3 - 3x2 + 3x - 1 + 2(x2 - 1)
a) \(A=x^2-6x+9-9y^2\)
\(=\left(x-3\right)^2-\left(3y\right)^2\)
\(=\left(x-3-3y\right)\left(x-3+3y\right)\)
b) \(B=x^3-3x^2+3x-1+2\left(x^2-1\right)\)
\(=\left(x-1\right)^3+\left(2x+2\right)\left(x-1\right)\)
\(=\left(x-1\right)\left[\left(x-1\right)^2+2x+2\right]\)
\(=\left(x-1\right).\left(x^2+3\right)\)
a, \(A=\left(x-3\right)^2-9y^2=\left(x-3-3y\right)\left(x-3+3y\right)\)
b, \(B=\left(x-1\right)^3+2\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left[\left(x-1\right)^2+2\left(x+1\right)\right]\)
\(=\left(x-1\right)\left(x^2-2x+1+2x+2\right)=\left(x-1\right)\left(x^2+3\right)\)