so sánh 2 phân số 2012/2013 và 2013/2014
So sánh (2012^2013+2013^2013)^2014 và (2012^2013+2013^2014)^2013
so sánh A=2012/2013+2013/2014 và B=2012+2013/2013+2014
Ta thấy B=2012+2013/2013+2014<1(vì 2012+2013<2013+2014)
Ta có A=2012/2013+2013/2014
A=1-1/2013+1-1/2014
A=(1+1)-(1/2013+1/2014)
A=2-(1/2013+1/2014)
Mà 1/2013<1/2;1/2014<1/2
=>1/2013+1/2014<1/2+1/2=1
=>2-(1/2013+1/2014)>1
=>A>1
Mà B<1
=>A>B
\(B=\frac{2012+2013}{2013+2014}=\frac{2012}{2013+2014}+\frac{2013}{2013+2014}< \frac{2012}{2013}+\frac{2013}{2014}=A\)
Vậy B<A
So sánh 2 phân số: A= \(\frac{2014^{2013}+1}{2014^{2014}+1}\)và B= \(\frac{2014^{2012}+1}{2014^{2013}+1}\)
Gợi ý nhé: bạn hãy so sánh 2014A và 2014B rồi suy ngược lại A và B
Ta có:
2014A=20142014+ 2014/20142014+1=1+2013/20142014+1
2014B=20142013+2014/20142013+1=1+2013/20142013+1
vì 1+2013/20142014+1<1+2013/20142013+1 nên 10A < 10B
suy ra A<B
So sánh phân số sau bằng cách nhanh nhất: a, 2012 2013 và 2013 2014 b, 1006 1007 và 2013 2015 c. 64 73 và 45 51
a) Ta có:
\(\dfrac{2012}{2013}+\dfrac{1}{2013}=1\)
\(\dfrac{2013}{2014}+\dfrac{1}{2014}=1\)
Vì \(\dfrac{1}{2013}>\dfrac{1}{2014}\) nên \(\dfrac{2012}{2013}< \dfrac{2013}{2014}\)
b) Ta có:
\(\dfrac{1006}{1007}+\dfrac{1}{1007}=1\)
\(\dfrac{2013}{2015}+\dfrac{2}{2015}=1\)
Vì \(\dfrac{1}{1007}=\dfrac{2}{2014}>\dfrac{2}{2015}\)
nên \(\dfrac{1006}{1007}< \dfrac{2013}{2015}\)
c) ta có:
\(1-\dfrac{64}{73}=\dfrac{9}{73}=\dfrac{153}{1241}\)
\(1-\dfrac{45}{51}=\dfrac{2}{17}=\dfrac{146}{1241}\)
Vì \(\dfrac{153}{1241}>\dfrac{146}{1241}\) nên \(\dfrac{63}{73}>\dfrac{45}{51}\)
a) 2012/2013 và 2013/2014
1-2012/2013=1/2013
1-2013/2014=1/2014
Vì 1/2013> 1/2014 nên 2012/2013<2013/2014
b) 1006/1007 và 2013/2015
1-1006/1007=1/1007=2/2014
1-2013/2015=2/2015
Vì 2/2014>2/2015 nên 1006/1007<2013/2015
c) 64/73 và 45/51
1-64/73=9/73=18/146
1-45/51=2/17=18/153
Vì 18/146> 18/153 nên 64/73<45/51
SO SÁNH ; ( 2012^2013+2013^2013)^2014 và (2012^2014+2013^2014)^2013
GIÚP MÌNH NHA MÌNH SẼ TICK CHO *.<
So sánh hai phân số :
A= 20142013+1/20142014+1 và 20142012+1/20142013+1
Tổng S có 50 phân số
=> S > 1/100 + 1/100 + 1/100 +...+ 1/100 (50 phân số) => S > 1/2.
Vậy S > 1/2
So sánh hai phân số:
A=2014^2013+1/2014^2014+1
B=2014^2012+1/2014^2013+1
So sánh(2014^n - 2013^n)/(2014^n + 2013^n) và (2013^n - 2012^n)/(2013^n + 2012^n)
Ta có (2014^n-2013^)/(2014^n+2013^n) +1 = 2*2014^n/(2014^n+2013^n) chia cả tử và mẫu cho 2014 ta được A= 2/[1+(2013/2014)]
Tương tự (2013^n-2012^)/(2013^n+2012^n) +1 = 2*2013^n/(2013^n+2012^n) chia cả tử và mẫu cho 2013 ta được B= 2/[1+(2012/2013)]
Vì Ta có 2012/2013 < (2012+1)/(2013+1) = 2013/2014 nên A < B
So sánh hai biểu thức A và B biết
A = 2012/2013 + 2013/2014 và B = 2012+2013/2013+2014
Ta có:
B=2012/(2013+2014)+2013/(2013+2014)
Xét từng số hạng của B:
2012/(2013+2014)<2012/2013
2013/2013+2014<2013/2014
=>B=2012/(2013+2014)+2013/(2013+2014)<2012/2013+2013/2014=A
=>B<A