3x + 2x- 11.2 = 28
Tìm x, biết
a) 7x^2 – 28 = 0
b)2 phần 3x(x^2-4)=0
c) 2x^2 + 3x –5 = 0
d) 2x(3x – 5) – 5 + 3x = 0
e) (2x – 1)^2 – (2x + 5)(2x – 5) = 18
a: \(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Tìm x, biết
a) 7x^2 – 28 = 0
b)2 phần 3x(x^2-4)=0
c) 2x^2 + 3x –5 = 0
d) 2x(3x – 5) – 5 + 3x = 0
e) (2x – 1)^2 – (2x + 5)(2x – 5) = 18
a) \(7x^2=28\Leftrightarrow x^2=7\Leftrightarrow x=\sqrt{7}\)
c) \(\left(x-1\right)\left(x+\dfrac{5}{2}\right)=0\Leftrightarrow x\in\left\{1;\dfrac{-5}{2}\right\}\)
Tìm x, biết:
a) 7x2 - 28 = 0
b) \(\dfrac{2}{3}\)x(x2 - 4) = 0
c) 2x(3x - 5) - (5 - 3x) = 0
d) (2x - 1)2 - 25 = 0
a) Ta có: \(7x^2-28=0\)
\(\Leftrightarrow7\left(x^2-4\right)=0\)
\(\Leftrightarrow7\left(x-2\right)\left(x+2\right)=0\)
mà 7>0
nên (x-2)(x+2)=0
hay \(\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-2\right\}\)
b) Ta có: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)
\(\Leftrightarrow\dfrac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)
mà \(\dfrac{2}{3}>0\)
nên x(x-2)(x+2)=0
hay \(\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-2;2\right\}\)
c) Ta có: \(2x\left(3x-5\right)-\left(5-3x\right)=0\)
\(\Leftrightarrow2x\left(3x-5\right)+\left(3x-5\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=5\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{5}{3};-\dfrac{1}{2}\right\}\)
d) Ta có: \(\left(2x-1\right)^2-25=0\)
\(\Leftrightarrow\left(2x-1-5\right)\left(2x-1+5\right)=0\)
\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{3;-2\right\}\)
a,7x2 - 28 = 0
=> 7x2 = 28 => x2 = 4 => x = 2
b,2/3x(x2 - 4) = 0
=>2/3x(x - 2)(x + 2) = 0
=> x ∈ {0 ; 2 ; -2}
c,2x(3x - 5) - (5 - 3x) = 0
= 2x(3x - 5) + (3x - 5)
= (3x - 5)(2x + 1) = 0
=> x ∈ { 5/3 ; -1/2}
d, (2x - 1)2 - 25 = 0
=> (2x - 4)(2x - 6) = 0
=> x ∈ {2 ;3}
a,7x2 - 28 = 0
=> 7x2 = 28 => x2 = 4 => x = 2
b,2/3x(x2 - 4) = 0
=>2/3x(x - 2)(x + 2) = 0
=> x ∈ {0 ; 2 ; -2}
c,2x(3x - 5) - (5 - 3x) = 0
= 2x(3x - 5) + (3x - 5)
= (3x - 5)(2x + 1) = 0
=> x ∈ { 5/3 ; -1/2}
d, (2x - 1)2 - 25 = 0
=> (2x - 4)(2x - 6) = 0
=> x ∈ {2 ;3}
Bài 3: Giải các phương trình sau:
a, 2x3 - 50x = 0
b, 2x (3x - 5) - (5 - 3x)
c, 9(3x - 2) = x(2 - 3x)
d, (2x - 1)2 - 25 = 0
e, 25x2 - 2 = 0
f, x2 - 25 = 6x - 9
g, 5x(x - 3) - 2x + 6 = 0
h, 3x(x - 7) - 2(x - 7) = 0
i, 7x2 - 28 = 0
j, (2x + 1) + x(2x + 1) = 0
k, (x + 2)2 - (x - 2)(x + 2) = 0
l, x3 + 5x2 - 4x - 20 = 0
m, x2 - 25 + 2(x + 5) = 0
n, x3 - 3x + 2 = 0
o, x2 - 6x + 8 = 0
p, x2 - 5x - 14 = 0
q, (x - 2)2 - (x - 3)(x + 3) = 6
r, (2x - 1)2 - (2x + 5)(2x - 5) = 18
Tìm x Thuộc N biết:
a) 10+2x=4^5:4^3
b) 130-(100+x) =25
c) 2^2.(x+3^2)-5=55
d) 7^2-7(13-x) =14
e) 240:(x-5)=2^2.5^2-20
f) 250-10(24-3x):15=244
g) 6^2x-5^2x=11.2^2-70
h) 2^3x+5^2x=2(5^2+2^3)-33
Ai làm nhanh nhất em sẽ tick cho ạ
a) 10+2x=45:43
10+2x=42
10+2x=16
2x=16-10
2x=6
x=6:2
x=3
vậy x=3
b)130-(100+x)=25
100+x=130-25
100+x=105
x=105-100
x=5
vậy x=5
c)22.(x+32)-5=55
4.(x+9)=55+5
x+9=60:4
x+9=15
x=15-9
x=6
vậy x=9
d)72-7(13-x)=14
49-7(13-x)=14
7(13-x)=49-14
13-x=35:7
13-x=5
x=13-5
x=8
vậy x=8
x+2x+3x+4x+5x=x+28
x + 2x + 3x + 4x + 5x = x + 28
x + 2x + 3x + 4x + 5x - x = 28
14x = 28
x = 28 : 14
x = 2
x + 2x + 3x + 4x + 5x = x + 28
=> x + 2x + 3x + 4x + 5x - x = 28
=> x x ( 1 + 2 + 3 + 4 + 5 - 1 ) = 28
=> x x 14 = 28
=> x = 28 : 14
=> x = 2
Vậy x = 2
Chúc bạn học tốt !!!
\(\text{x+2x+3x+4x+5x=x+28}\)
\(\Rightarrow x+2x+3x+4x+5x+x=28\)
\(\Rightarrow16x=28\)
\(\Rightarrow x=\frac{28}{16}=\frac{7}{4}\)
Giải phương trình: \(\sqrt{2x^4-4x^2+11}+\sqrt{3x^2-6x+28}=-3x^2+6x+5\)
\(\Leftrightarrow\sqrt{2\left(x^2-1\right)^2+9}+\sqrt{3\left(x-1\right)^2+25}=-3\left(x-1\right)^2+8\)
Ta có:
\(\left\{{}\begin{matrix}\sqrt{2\left(x^2-1\right)^2+9}+\sqrt{3\left(x-1\right)^2+25}\ge\sqrt{9}+\sqrt{25}=8\\-3\left(x-1\right)^2+8\le8\end{matrix}\right.\)
\(\Rightarrow\sqrt{2\left(x^2-1\right)^2+9}+\sqrt{3\left(x-1\right)^2+25}\ge-3\left(x-1\right)^2+8\)
Đẳng thức xảy ra khi và chỉ khi \(x=1\)
a, 2x²-18x+28=0. b, x-2/x²-9+3x-1/x+3=2x+1/x-3+1
\(a,2x^2-18x+28=0\)
\(\Leftrightarrow2\left(x^2-9x+14\right)=0\)
\(\Leftrightarrow x^2-9x+14=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=2\end{matrix}\right.\)
\(b,\dfrac{x-2}{x^2-9}+\dfrac{3x-1}{x+3}=\dfrac{2x+1}{x-3}+1\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\dfrac{x-2}{\left(x-3\right)\left(x+3\right)}+\dfrac{\left(3x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(2x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-1=0\)
\(\Leftrightarrow\dfrac{x-2}{\left(x-3\right)\left(x+3\right)}+\dfrac{3x^2-10x+3}{\left(x-3\right)\left(x+3\right)}-\dfrac{2x^2+7x+3}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=0\)\(\Rightarrow x-2+3x^2-10x+3-2x^2-7x-3-x^2+9=0\)
\(\Leftrightarrow-16x+7=0\)
\(\Leftrightarrow-16x=-7\)
\(\Leftrightarrow x=\dfrac{7}{16}\left(tm\right)\)
\(VậyS=\left\{\dfrac{7}{16}\right\}\)
a: =>x^2-9x+14=0
=>(x-2)(x-7)=0
=>x=2 hoặc x=7
b: =>x-2+(3x-1)(x-3)=(2x+1)(x+3)+x^2-9
=>x-2+3x^2-9x-x+3=2x^2+7x+3+x^2-9
=>3x^2-9x+1=3x^2+7x-6
=>-16x=-7
=>x=7/16
Số giá trị x thỏa mãn 2x/42 = 28/3x
\(\frac{2x}{42}-\frac{28}{3x}=0\Leftrightarrow\frac{x}{21}-\frac{28}{3x}=0\Leftrightarrow\frac{x^2}{21x}-\frac{196}{21x}=0\Leftrightarrow\left(x-14\right)\left(x+14\right)=0\Leftrightarrow\hept{\begin{cases}x-14=0\\x+14=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=14\\x=-14\end{cases}}}\)