Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Xuân Trường
Xem chi tiết
Cuber Việt
Xem chi tiết
Nguyễn Huy Tú
18 tháng 6 2017 lúc 20:39
 Mashiro Shiina
25 tháng 4 2018 lúc 12:55

Nhận thấy \(\)\(\dfrac{1}{1.1!}=1\); \(\dfrac{1}{2.2!}=\dfrac{1}{4}\)

Đặt \(P=\dfrac{1}{3.3!}+...+\dfrac{1}{2013.2013!}\)

\(P=\dfrac{1}{3.1.2.3}+...+\dfrac{1}{2013.1.2...2013}\)

\(P< \dfrac{1}{1.2.3}+...+\dfrac{1}{2011.2012.2013}\)

\(P< \dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+...+\dfrac{1}{2011.2012}-\dfrac{1}{2012.2013}\right)\)

\(P< \dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2012.2013}\right)=\dfrac{1}{4}-\dfrac{1}{2.2012.2013}\)

\(P< \dfrac{1}{4}\)

\(A< \dfrac{1}{4}+\dfrac{1}{4}+1=\dfrac{3}{2}\left(đpcm\right)\)

Cuber Việt
Xem chi tiết
hung nguyen
Xem chi tiết
Vicky Lee
20 tháng 9 2019 lúc 19:49

Với n=1 (tính tay ra) đúng 
Với n=2 (tính tay ra) đúng 
Với n=3 (tính tay ra) đúng. 
Giả sử phương trình trên đúng với n=k, nếu nó cũng đúng với n=k+1 thì phương trình đúng. 
1.1! + 2.2!+...+k*k!=(k+1)!-1 (theo giả thiết trên). 
Phải chứng minh:1.1! + 2.2!+...+k*k! + (k+1)*(k+1)!=(k+1+1)!-1 
<=> (k+1)!-1+(k+1)*(k+1)!=(k+2)!-1 
<=> (k+1)! + (k+1)*(k+1)!=(k+2)! 
<=>(k+1)!*(1+k+1)=(k+2)! 
<=>(k+2)!=(k+2)! Điều này luôn đúng. 
Vậy đẳng thức đã được chứng minh.

Trần Đức Toàn
Xem chi tiết
Đức Vương Hiền
Xem chi tiết
Akai Haruma
20 tháng 2 2019 lúc 23:27

Lời giải:
\(S=1.1!+2.2!+3.3!+...+n.n!\)

\(=(2-1).1!+(3-1).2!+(4-1).3!+...+(n+1-1).n!\)

\(=2.1!-1!+3.2!-2!+4.3!-3!+...+(n+1)n!-n!\)

\(=2!-1!+3!-2!+4!-3!+....+(n+1)!-n!\)

\(=(2!+3!+...+(n+1)!)-(1!+2!+....+n!)\)

\(=(n+1)!-1\)

Kẻ giấu mặt
Xem chi tiết
Amemiyaaiko
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết